
MATLAB TOOLS FOR SOLVING PERIODIC
EIGENVALUE PROBLEMS 1

Robert Granat ∗ Bo K̊agström ∗ Daniel Kressner ∗,2

∗Department of Computing Science and HPC2N, Ume̊a
University, SE-90187 Ume̊a, Sweden.
{granat,bokg,kressner}@cs.umu.se

Abstract: Software for computing eigenvalues and invariant subspaces of general
matrix products is proposed. The implemented algorithms are based on orthogonal
transformations of the original data and thus attain numerical backward stability,
which enables good accuracy even for small eigenvalues. The prospective toolbox
combines the efficiency and robustness of library-style Fortran subroutines based
on state-of-the-art algorithms with the convenience of Matlab interfaces. It will
be demonstrated that this toolbox can be used to address a number of tasks in
systems and control theory, such as the solution of periodic discrete-time algebraic
Riccati equations.

Keywords: linear periodic system, matrix product, periodic eigenvalue problem,
periodic Schur form, library software, Matlab tools.

1. INTRODUCTION

Let us consider a linear discrete-time system of
the form

Ekxk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk
(1)

with state, input and output vectors xk, uk,
and yk, respectively. The coefficient matrices
Ak, Bk, Ck, Dk, Ek are supposed to be of matching
dimensions. Moreover, we also assume that (1)
is periodic for some period p ≥ 1, i.e., Ak+p =
Ak, Bk+p = Bk, Ck+p = Ck, Dk+p = Dk, Ek+p =
Ek for all integers k. Computational tasks for
such periodic systems can often be addressed by
solving periodic (or product) eigenvalue problems,
see (Varga and Van Dooren 2001) for an overview.
For example, if all Ek are square and invertible

1 Supported by the Swedish Foundation for Strategic

Research under the Frame Programme Grant A3 02:128.
2 This author was additionally supported by a DFG
Emmy Noether fellowship.

then (1) is asymptotically stable if and only if all
eigenvalues of the monodromy matrix

Π = E−1
p ApE

−1
p−1Ap−1 · · ·E−1

1 A1 (2)

lie strictly inside the unit circle.

Theoretically, the eigenvalues of (2) can be com-
puted by first forming the product Π explicitly
and then applying any general-purpose eigenvalue
solver. In finite-precision arithmetic, however, this
approach may lead to potentially disastrous nu-
merical inaccuracies. For example, if any of the
matrices Ek is nearly singular then its inversion
must be avoided whenever possible; a rule that
has driven the development of the QZ algorithm
for the case p = 1 (Moler and Stewart 1973). Even
if all matrices Ek are well-conditioned, smaller
eigenvalues of Π are severely affected by the lack
of numerical backward stability in matrix multi-
plication (Higham 2002) and cannot be computed
by such an approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

There are several alternatives that take the prod-
uct structure of Π into account and avoid some
or all of the numerical disadvantages mentioned
above.

Lifting (Flamm 1991) is a well-known technique
to transform a periodic system (1) into a time-
invariant none. Applied to (2), this leads to a
block cyclic matrix pencil

A− λE =
0 Ap

A1
. . .
.

Ap−1 0

− λ

Ep

E1

. . .
Ep−1

 .
(3)

The eigenvalues of A − λE are the pth roots
of the eigenvalues of Π. While this embedding
enables the application of the standard QZ al-
gorithm to attain good eigenvalue accuracy, the
numerical identification of the pth roots is prob-
lematic and the computational cost increases
cubically with p.

Collapsing (Benner and Byers 2001, Van Dooren
1999) is a technique that reduces the long prod-
uct (2) to the case p = 1 without inverting
any of the matrices Ek. It can equivalently be
viewed as an orthogonal equivalence transfor-
mation of a block cyclic matrix pencil closely
related to (3). The computational cost of this
approach increases linearly with p and numer-
ical inaccuracies due to nearly singular Ek are
avoided. On the other hand, collapsing does not
lead to an overall numerically backward stable
method for solving periodic eigenvalue prob-
lems. This has been demonstrated in (Granat et
al. 2006b) for computing eigenvectors belonging
to smaller eigenvalues.

The periodic QZ algorithm (Bojanczyk et al. 1992,
Hench and Laub 1994) orthogonally trans-
forms the matrices Ek and Ak into upper
(quasi-)triangular form. It achieves numerical
backward stability and has a computational
cost that increases linearly with p. All publicly
available implementations of the periodic QZ
algorithm currently support only the case when
each Ek is an identity matrix. In this case,
the periodic QZ reduces to the periodic QR
algorithm, see also (Kressner 2006).

Because of its numerical advantages, the imple-
mentations described in this paper are based on
the periodic QZ algorithm and variants thereof.
We are developing a Fortran library that admits
non-trivial factors Ek; in fact, much more general
matrix products are supported, see Section 2. The
purpose of this paper is to describe prospective
Matlab functions that are based on MEX in-
terfaces to these Fortran routines. In Section 3,
we describe the functionality of the toolbox on
a level that is suitable for developers and expert

users. In Section 4, a Matlab class product is
introduced that allows the convenient use of these
tools without knowledge of the internal algorithms
or data structures.

Besides periodic systems there are a variety
of other applications requiring the solution of
product eigenvalue problems. For example, the
structure-preserving solution of time-invariant linear-
quadratic (LQ) optimal control problems gives
rise to matrix products with up to five fac-
tors (Benner et al. 2002a).

2. NOTATION

In the scope of this paper, we consider product
eigenvalue problems in their most general form:

Asp
p A

sp−1
p−1 · · ·A

s1
1 , (4)

with the indices s1, . . . , sp ∈ {1,−1}. The dimen-
sions of A1, . . . , Ap should match, i.e.,

Ak ∈
{

Rnk+1×nk if sk = 1,
Rnk×nk+1 if sk = −1,

where np+1 = n1 (to simplify the notation we will
identify p+1 with 1 in the following). Additionally,
we require the condition

p∑
k=1

sk=1

nk +
p∑

k=1
sk=−1

nk+1 =
p∑

k=1
sk=−1

nk +
p∑

k=1
sk=1

nk+1, (5)

which ensures that the corresponding lifted pen-
cil (3) is square.

The level of generality imposed by (4) allows to
cover the other applications mentioned above that
do not necessarily lead to a matrix product having
the somewhat simpler form (2). It is worth men-
tioning that we admit matrices Ak corresponding
to an index sk = −1 to be singular or even
rectangular, in which case the matrix product (4)
should only be understood in a formal sense.

2.1 Periodic Schur decomposition

To define the eigenvalues associated with a formal
matrix product, one could consider the canonical
form of (4), see (Sergeichuk 2004) for an overview,
or an appropriate generalization of the lifted rep-
resentation (3). A more computationally oriented
definition can be derived from the periodic Schur
decomposition.

Theorem 1. There are orthogonal matrices Q1 ∈
Rn1×n1 , . . . , Qp ∈ Rnp×np such that each

Tk :=
{

QT
k+1AkQk if sk = 1,

QT
k AkQk+1 if sk = −1.

(6)

takes the form

Tk =

 T11,k T12,k T13,k

0 T22,k T23,k

0 0 T33,k

 , (7)

where all T22,k are square and of the same order
nc ≤ n. Moreover, T22,k is upper quasi-triangular
for one index k = l and upper triangular for every
other k. The formal matrix products T

sp

11,p · · ·T
s1
11,1

and T
sp

33,p · · ·T
s1
33,1 contain the dimension-induced

infinite and zero eigenvalues, respectively.

A mathematically precise definition of dimension-
induced infinite and zero eigenvalues is beyond the
scope of this paper, see, e.g., (Sergeichuk 2004) for
more details. The nc eigenvalues of T

sp

22,p · · ·T
s1
22,1

are called core eigenvalues and can be easily com-
puted by multiplying the diagonal elements of
T s1

22,1, . . . , T
sp

22,p explicitly. 3 Core infinite eigenval-
ues may exist if at least one sk = −1 and T22,k is
singular; otherwise all core eigenvalues are finite.

Let us illustrate the implication of Theorem 1
for the important special case when the inverted
factors are square, i.e., nk = nk+1 whenever sk =
−1. Then the blocks T11,k in (7) are void, and

T
sp

33,p · · ·T
s1
33,1 = 0 ∈ R(n1−nc)×(n1−nc)

with nc = min{n1, n2, . . . , np}. Note that nc

might be smaller than the minimum of all dimen-
sions in the general case.

2.2 Deflating subspaces and eigenvectors

A sequence of subspaces X1 ⊆ Cn1 ,X2 ⊆
Cn2 , . . . ,Xp ⊆ Cnp having the same dimension
(e.g., dim(Xk) = m) is called a periodic deflating
subspace if

AkXk ⊂ Xk+1, if sk = 1,
AkXk+1 ⊂ Xk, if sk = −1.

If nk = nk+1 whenever sk = −1, the periodic
Schur decomposition (6)–(7) is easily seen to im-
ply that the first m columns of Q1, . . . , Qp span a
periodic deflating subspace for every m ≤ nc such
that the (m + 1,m) entry of T22,l is nonzero. It
belongs to the core eigenvalues that reside in the
leading m diagonal elements of T s1

22,1, . . . , T
sp

22,p.
Periodic deflating subspaces belonging to other
eigenvalues can be computed by reordering the pe-
riodic Schur decomposition (Granat et al. 2006a),
see also Section 3.2.4.

3 The numerical treatment of 2 × 2 blocks in the upper

quasi-triangular matrix T22,l requires some attention (Van

Loan 1973).

A periodic eigenvector can be defined as a se-
quence of nonzero vectors x1 ∈ Cn1 , x2 ∈
Cn2 , . . . , xp ∈ Cnp that spans a periodic deflating
subspace, with dim(span(xk)) = 1 for all k. In the
case nk = nk+1 whenever sk = −1, an eigenvector
can be computed by reordering the corresponding
eigenvalue to the top-left corner of the product
T

sp

22,p · · ·T
s1
22,1. Alternatively, it can be extracted

from the null space of the correspondingly shifted
block cyclic embedding, see also (Moravitz Martin
and Van Loan 2002).

3. ALGORITHMS AND CORE
FUNCTIONALITY

The computational approach in our toolbox is
based on the periodic Schur decomposition (6)–
(7).

3.1 Data structures

In Matlab, we store matrices in a cell array. A
cell array is a general purpose matrix. Each of the
elements can contain data of a different type, size
and dimension. For cell arrays, storage is allocated
dynamically. In particular, for the matrices in (4),
we may use a code snippet as

A = cell(1,p);
for k=1:p, A{k} = A(:,:,k);, end

to create the cell array A and store the matrices
A1, A2, . . . , Ap in the array.

In contrast to ordinary three-dimensional arrays,
this storage scheme does not waste a lot of mem-
ory for sequences with strong variation in the ma-
trix dimensions or where the order of the matrices
should be changed on runtime or the period p may
be increased or decreased.

In our Fortran software, the data structure for
storing the matrix sequences is an array of For-
tran 90 pointers to ordinary two-dimensional data
arrays which has the same storage saving benefits
as the cell arrays.

The signatures s1, . . . , sp ∈ {1,−1} are provided
in a one-dimensional array s of length p. Alter-
natively, the user can provide text strings s =
’ones’ and s = ’alter’ to denote the two com-
monly encountered situations sk ≡ 1 and sk =
(−1)k−1, respectively. By default, s = ’ones’.

3.2 Functions with arguments and results

In the following, we present Matlab interfaces
to the core functions in our toolbox. As usual,
a function call provides input to the function by
passing the data in an argument list. Data that

needs to be returned to the caller is passed back
in a list of return values. Typically, the input and
output data are cell arrays with signatures. Braces
{ ... } in the function definitions below identify
optional arguments as well as result values. We
remark that the transformed cell array T of an
argument A has the same signature as A.

3.2.1. Reduction to a square product
[{Q,}T] = per square(A{,s})

Deflates dimension-induced zero and infinite eigen-
values from a general matrix product (4). An
orthogonal decomposition of the form (6)–(7) is
computed with the square matrices T22,1, . . . , T22,p

in unreduced form. The orthogonal transforma-
tion matrices and the transformed matrices are
contained in the cell arrays Q and T, respectively.

3.2.2. Reduction to periodic HT form
[{Q,}T] = per hess(A{,s,l})

Reduces a general matrix product (4) to periodic
Hessenberg-triangular (HT) form. An orthogonal
decomposition of the form (6)–(7) is computed,
where T22,l is upper Hessenberg and T22,k is upper
triangular for all k 6= l. By default, l = 1.

3.2.3. Reduction to periodic Schur form
[{Q,}T] = per schur(A{,s,l})

Reduces a general matrix product (4) to periodic
Schur form. An orthogonal decomposition of the
form (6)–(7) is computed, where T22,l is upper
quasi-triangular and T22,k is upper triangular for
all k 6= l. By default, l = 1.

3.2.4. Reordering eigenvalues
[{Q,}T] = per ordqz({Q,}T{,s,l}, slct)

Reorders eigenvalues so that a selected cluster
of eigenvalues appears in the leading (top-left)
diagonal blocks of T22,1, . . . , T22,p in the periodic
Schur form T. This is done by orthogonal trans-
formations (see below) and the associated periodic
deflating subspace is spanned by the correspond-
ing leading columns of Q. The logical vector slct
specifies the selected cluster as they appear along
the diagonals of the input T22,1, . . . , T22,p. slct
can also be a string variable that defines a region
of the complex plane, e.g., slct = ’udi’ corre-
sponds to all eigenvalues inside the unit disk.

Periodic eigenvalue reordering is performed by
generalizations of the LAPACK methodology (Bai
and Demmel 1993, K̊agström and Poromaa 1996)
to general products of matrices of the form (4).
First, the product is recasted on the exponent
structure (2) by insertion of identity matrices.
Then, we solve periodic matrix equations and

apply sequences of orthogonal transformations
to T22,1, . . . , T22,p (Granat and K̊agström 2006,
Granat et al. 2006a). One important step in these
backward stable reordering methods is the com-
putation of a solution to a Blocked Almost Block
Diagonal (BABD) linear system to high accuracy
using structured variants of Gaussian elimination
with partial pivoting (GEPP) or QR factorization.

Currently we do not plan to support reordering
of non-core eigenvalues since we are not aware of
any applications calling for such an operation.

3.2.5. Computation of eigenvalues only
e = per eig(A{,s,’factor’})

Returns a one-dimensional array e of length n1

that contains the eigenvalues of a general matrix
product (4). This contains all nc ≤ n1 core eigen-
values and, possibly, dimension-induced zero and
infinite eigenvalues. If the optional input argu-
ment ’factor’ is provided, the eigenvalues are
returned in factorized form, i.e., an n1 × p ar-
ray e is returned whose row products give the
eigenvalues (using prod(e,2)). This allows, e.g.,
computing the logarithms of eigenvalue magni-
tudes that would otherwise over- or underflow:
sum(log(abs(e)),2).

3.3 Complex matrices

If any of the matrices in the cell array A happens
to be complex, the Matlab function listed above
return complex variants of the periodic decompo-
sitions: Q becomes unitary, the transpose in (6)
becomes the complex conjugate transpose, and
the quasi-triangular matrix Tl,22 becomes trian-
gular.

3.4 Additional functionality

Additional functionality and tools will be pro-
vided, including the solution of various peri-
odic Sylvester-type matrix equations (Varga and
Van Dooren 2001, Granat et al. 2006c). The de-
mand of such solvers appear in different control
applications but are also useful for condition esti-
mation and error bounds of computed quantities
(eigenvalues, and periodic deflating subspaces).
Relevant perturbation theory for product eigen-
value problems are presented in (Lin and Sun
2001, Benner et al. 2002b, Sun 2005).

4. THE MATRIX PRODUCT CLASS

Matlab classes provide a convenient way to hide
the technical complexity imposed by the gener-
ality of periodic eigenvalue problems. We have

designed a class product that contains the cell
and signature arrays A, s, and provides several
operations for creating and manipulating objects.

4.1 Construction of a product object

The simplest way to construct a product object
is to type p = product(A1), where A1 is a two-
dimensional array. This corresponds to a product
of length 1: Π = A1. Products of longer lengths
can be created using the overloaded operations *
and inv. For example,

p = inv(product(A2)) * product(A1)

corresponds to a (formal) product of length 2:
Π = A−1

2 A1. It is important to note that the
inversion and multiplication are never carried out
explicitly for product objects. In particular, this
admits formal inverses of rectangular matrices.

4.2 Main computational functions
[{Q,} pT] = square({Q,} p)
[{Q,} pT] = hess({Q,} p)
[{Q,} pT] = schur({Q,} p)
[{Q,} pT] = ordqz({Q,} p, slct)

The functions listed above are product class
equivalents of the Matlab functions described
in Sections 3.2.1–3.2.4. Q is a cell array con-
taining the orthogonal transformation matrices
and T is a product object containing the trans-
formed product T

sp
p T

sp−1
p−1 · · ·T s1

1 . The function e
= eig(p{,’factor’}) returns the eigenvalues of
the product corresponding to p as described in
Section 3.2.5.

4.3 Utilities

In the following, we assume that p is a prod-
uct object corresponding to the matrix product
A

sp
p A

sp−1
p−1 · · ·A

s1
1 .

p’ transposes the product.
p1 + p2 adds the coefficients of two product

objects having the same dimensions.
p * X for a cell array X computes a product with

new transformed coefficients AkXk (if sk = 1)
and XkAk (if sk = −1).

X * p for a cell array X computes a product
with new transformed coefficients Xk+1Ak (if
sk = 1) and AkXk+1 (if sk = −1).

lift(p) returns a lifted, block cyclic representa-
tion of the form (3).

norm(p, nrm) returns a vector containing the
norms of the coefficients. Which norm is con-
trolled by nrm, e.g., nrm = ’fro’ corresponds
to the Frobenius norm.

prod(p) explicitly forms the matrix product if
possible.

dim(p) returns a vector of length p+1 containing
the matrix dimensions n1, n2, ..., np+1.

signature(p) returns a vector of length p con-
taining the matrix signatures s1, s2, ..., sp with
sk ∈ {−1,+1}.

5. CASE STUDY: SOLUTION OF PERIODIC
RICCATI EQUATIONS

The unique symmetric positive semidefinite solu-
tion Xk = Xk+p of the discrete-time periodic Ric-
cati equation (DPRE) (Bittanti et al. 1991, Hench
and Laub 1994)

0 = CT
k HkCk − ET

k−1XkEk−1 + AT
k Xk+1Ak

−AT
k Xk+1Bk(Nk + BT

k Xk+1Bk)−1BT
k Xk+1Ak,

(8)

can be computed robustly in terms of an asso-
ciated periodic deflating subspace problem. The
DPRE (8) appears in the LQ optimal control
problem associated with the system (1) where all
Ek are nonsingular, and the weighting matrices
of the cost functional are p-periodic, i.e., Hk+p =
Hk(= HT

k ≥ 0) and Nk+p = Nk(= NT
k > 0).

Similarly as for the case Ek = In (Hench and Laub
1994), it can be shown that the 2n × 2n matrix
product

M−1
p LpM

−1
p−1Lp−1 · · ·M−1

1 L1 (9)

with

Lk =
[

Ak 0
−CT

k HkCk ET
k−1

]
,Mk =

[
Ek−1BkN−1

k BT
k

0 AT
k

]

has exactly n eigenvalues inside the unit disk
under the reasonable assumption that (1) is d-
stabilizable and d-detectable. By reordering the
periodic Schur form of the matrix product (9) we
can compute a periodic deflating subspace defined
by the orthogonal matrices Uk, Vk ∈ R2n×2n with
Vk+p = Vk such that

UT
k LkVk =

[
S

(k)
11 S

(k)
12

0 S
(k)
22

]
, UT

k MkVk+1 =

[
T

(k)
11 T

(k)
12

0 T
(k)
22

]
,

where the n× n matrix product

T
(p)
11

−1
S

(p)
11 · · ·T (2)

11

−1
S

(2)
11 T

(1)
11

−1
S

(1)
11

contains all eigenvalues inside the unit disk. If we
partition

Uk =

[
U

(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

]

with U
(k)
ij ∈ Rn×n, then

U
(k)
21

[
U

(k)
11

]−1

= XkEk−1,

from which Xk can be computed.

Using our Matlab tools and assuming that we
have defined cell arrays L and M corresponding to
Lk and Mk above, the solution sequence Xk for
k = 1, . . . , p can be computed as:

for k = 1:p,
A{2*k-1} = L{k}; A{2*k} = M{k};

end
pA = product((-1).^[1:2*p], A);

[Q, pT] = schur(pA);
[Q, pT] = ordqz(Q, pT, ’udi’);

X = cell(1,p);
for k = 1:p,
X{k} = Q{2*k-1}(n+1:2*n,1:n) / ...

Q{2*k-1}(1:n,1:n) / L{k}(1:n,1:n);
end

REFERENCES

Bai, Z. and J. W. Demmel (1993). On swapping
diagonal blocks in real Schur form. Linear
Algebra Appl. 186, 73–95.

Benner, P. and R. Byers (2001). Evaluating prod-
ucts of matrix pencils and collapsing matrix
products. Numerical Linear Algebra with Ap-
plications 8, 357–380.

Benner, P., R. Byers, V. Mehrmann and H. Xu
(2002a). Numerical computation of deflating
subspaces of skew-Hamiltonian/Hamiltonian
pencils. SIAM J. Matrix Anal. Appl.
24(1), 165–190.

Benner, P., V. Mehrmann and H. Xu (2002b). Per-
turbation analysis for the eigenvalue problem
of a formal product of matrices. BIT 42(1), 1–
43.

Bittanti, S., P. Colaneri and G. De Nicolao (1991).
The periodic Riccati equation. In: The Riccati
Equation (S. Bittanti, A. J. Laub and J. C.
Willems, Eds.). pp. 127–162. Springer-Verlag.
Berlin, Heidelberg, Germany.

Bojanczyk, A., G. H. Golub and P. Van Dooren
(1992). The periodic Schur decomposition;
algorithm and applications. In: Proc. SPIE
Conference. Vol. 1770. pp. 31–42.

Flamm, D. S. (1991). A new shift-invariant repre-
sentation for periodic linear systems. Systems
Control Lett. 17(1), 9–14.

Granat, R. and B. K̊agström (2006). Direct Eigen-
value Reordering in a Product of Matrices in
Periodic Schur Form. SIAM J. Matrix Anal.
Appl. 28(1), 285–300.

Granat, R., B. K̊agström and D. Kressner (2006a).
Computing Periodic Deflating Subspaces As-
sociated with a Specified Set of Eigenvalues.
BIT Numerical Mathematics (submitted).

Granat, R., B. K̊agström and D. Kressner (2006b).
Reordering the Eigenvalues of a Periodic Ma-
trix Pair with Applications in Control. In:
Proc. of 2006 IEEE Conference on Computer
Aided Control Systems Design (CACSD).
pp. 25–30. ISBN:0-7803-9797-5.

Granat, R., I. Jonsson and B. K̊agström (2006c).
Recursive Blocked Algorithms for Solving
Periodic Triangular Sylvester-type Matrix
Equations. In: Proc. of PARA’06: State-of-
the-art in Scientific and Parallel Computing.
LNCS, Springer (to appear).

Hench, J. J. and A. J. Laub (1994). Numeri-
cal solution of the discrete-time periodic Ric-
cati equation. IEEE Trans. Automat. Control
39(6), 1197–1210.

Higham, N. J. (2002). Accuracy and Stability
of Numerical Algorithms. second ed.. SIAM.
Philadelphia, PA.

K̊agström, B. and P. Poromaa (1996). Comput-
ing eigenspaces with specified eigenvalues of
a regular matrix pair (A,B) and condition
estimation: theory, algorithms and software.
Numer. Algorithms 12(3-4), 369–407.

Kressner, D. (2006). The periodic QR algorithm
is a disguised QR algorithm. Linear Algebra
Appl., 417(2-3):423–433.

Lin, W.-W. and J.-G. Sun (2001). Perturbation
analysis for the eigenproblem of periodic ma-
trix pairs. Linear Algebra Appl. 337, 157–187.

Moler, C. B. and G. W. Stewart (1973). An
algorithm for generalized matrix eigenvalue
problems. SIAM J. Numer. Anal. 10, 241–
256.

Moravitz Martin, C. D. and Van Loan, C. F.
(2002). Product triangular systems with shift.
SIAM J. Matrix Anal. Appl. 24, 292–301.

Sergeichuk, V. V. (2004). Computation of canon-
ical matrices for chains and cycles of linear
mappings. Linear Algebra Appl. 376, 235–
263.

Sun, J.-G. (2005). Perturbation bounds for sub-
spaces associated with periodic eigenprob-
lems. Taiwanese J. of Mathematics 9(1), 17–
38.

Van Dooren, P. (1999). Two point boundary value
and periodic eigenvalue problems. In: Pro-
ceedings IEEE CACSD conference.

Van Loan, C. F. (1973). Generalized Singular
Values with Algorithms and Applications.
PhD thesis. The University of Michigan.

Varga, A. and P. Van Dooren (2001). Compu-
tational methods for periodic systems - an
overview. In: Proc. of IFAC Workshop on Pe-
riodic Control Systems, Como, Italy. pp. 171–
176.

