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Reordering the Eigenvalues of a Periodic Matrix Pair
with Applications in Control

Robert Granat, Bo Kgstom, and Daniel Kressner

Abstract— Reordering the eigenvalues of a periodic matrix Qy, Z, € R™*™ with Z;, = Z; such that the transformed
pair is a computational task that arises from various appli- matrices
cations related to discrete-time periodic descriptor systems,
such as pole placement or linear-quadratic optimal control. _ T _ T _
However, it is also implicitly present in recently developed Sk =Qx AxZy, T = Qp BxZitr, k=0,
robust control methods for linear time-invariant systems. In this . S .
contribution, a direct algorithm for performing this task based ~ are all upper triangular, except fcf,_, which is in quasi-
on the solution of a periodic generalized Sylvester equation is triangular form. That is,S;,_ is block upper triangular with
proposed. The new approach is numerically backward stable 1 x 1 and2 x 2 blocks on the diagonal. The matrix product
and it is demonstrated that the resulting deflating subspaces
?naenthboed?mh more accurate than those computed by collapsing Tp_115p— T_12Sp_2 . Tf151T0_1So (3)

.,p—1,

I. INTRODUCTION is also block upper_triangular,_ has_the same eigenvalues

i ) ) : i as (2), and the periodic matrix pairSg,Tx) is said to

Let us consider a linear discrete-time descriptor systam f‘Be in generalized periodic real Schur forfGPRSF). The

which the coefficient matrices change periodically in time:eigenvalues can thus be easily extracted fromithel and
Epxpir = Apxp + Brug ) 2 x 2 blocks on the diagonal, although great care has to
ye = Crar+ Dyug, be exercized to avoid disastrous under- and overflow in this

computation [30]. It is usually assumed that the 2 blocks
correspond to complex conjugate pairs of eigenvalues only.

When applying the periodic QZ algorithm or related

methods, no particular order of the eigenvalues on the block
Sdiagonal of (3) can be guaranteed. Obtaining a certain order
i however, often a desirable goal. For example, if we have

k k
s sy |
(k) ) k
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with By, = Epy, € R™" Ay = Agyp € RV
B, = Bk+p e R™™m () = Ck+p € R™™ and D, =
Djyp € R™™ for some periogp > 1. Systems of this form
are calledlinear discrete-time periodic descriptor system
and arise naturally from processes that exhibit seasonal
periodic behavior, see, e.g., [5]. In practice, one oceasio
ally encounters systems for which the system matriegs
and A, are rectangular and have time-varying dimension. Sk =
This issue can be resolved by applying the preprocessing
techniques presented in [32], [34] and truncating thoséspar k) (k) .
that correspond to spurious characteristic values, whient With Si;°, Ti7” € R/*/ such that the upper left part

k k
iy 1)
o Tk

)

yields square system matrices of constant dimension. (5§}1€)7T1%f)) contains all eigenvalues in the open unit disc,
Provided that allE;, are nonsingular, thpoles(also called then the firstj columns of Z, span stable deflating sub-
characteristic valuesof (1) are given by the eigenvalues of SPaces. For initial states, € spar{Zoes, . . ., Zoe;) with e;
the matrix product being theith unit vector, the states of the open loop system
Erxpi1 = Apxy, satisfy z, € spar{Zies, ..., Zre;) and0
E Ay 1By Ay -  ETTALEGT Ag (2) is an asymptotically stable equilibrium.

associated with theeriodic matrix pair (A, Ey,). In prin- Using thg algorithm presenteq in this cpntribution, any or-
ciple, much of what is said in the following can be directlyder of the eigenvalues can be reliably attained by sucaslgsiv

extended to the case when some of g happen to be swapping adjacent diagonal blocks in the GPRSF. As shown

singular, see also [16]. For the sake of simplifying the prei_n Section Il, such a swapping can be realized via the salutio

sentation, however, we restrict ourselves to the nonsimgul©f @ Periodic generalized Sylvester equation. This apreac
case. in the spirit of various existing swapping procedures [1h][

Among the numerically reliable methods for obtaining[21]’ [23] for special cases of the GPRSF. In Section Ill, we

the eigenvalues of a periodic matrix pair is the periodi(f“scus‘S several other applications of eigenvalue reargeri

Qz algorithm [7], [17]. It computes orthogonal matricesSuch as the solution of periodic Riccati equations. Several
’ other methods have been successfully applied to address
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Il. SWAPPING DIAGONAL BLOCKS IN THE GPRSF where

Swapping consists of computing orthogonal matrices ved Ry) veo(ng))
Uk, Vi with Vk+p =V}, such that R = ; , Sio = ,
~ ~ 1
SIS or | SOSE g ved 1) vec<s<” )
~ - k ks
0 SS’S) 0 Sé? and L, 7, are defined analogously. Here, the vec operator
7)) 7k k) stacks the columns of a matrix into one long vector [14].
61 Tl(%) = Ul 61 Tl(%) Vi+1, (5) Moreover, S;; and Sy, are block dlagonal matrices with
22 22 diagonal entried,,, ® S\V,... I, ® S*V and {7 &
fork=0,...,p—1, and Inyyenns ng;*”T ® Ip,, respectlvely (similarly for7;; and
_ _ T32). Finally, the block shift matrixZ is given by
A(IL1) = AMI22),  A(a2) = A(I111), (6) 0 I
where T, = [T~ 71s®= D 7O 9O (1, is
similarly defined) and\(-) denotes the set of all eigenvalues zZ= _
of a matrix. For our purposeSl , Z(f) € R™*" are the '
diagonal blocks of a GPRSF; it can thus be assumed that I 0
n; € {1,2}. Hence, (8) represents 2niny x 2pnin, linear system of

) o equations. Since we assumed,n, € {1,2}, this linear
A. Block diagonalization and the PGCSY system is of moderate dimension. Moreover, the coefficient
If the off-diagonal blocks in (4)—(5) were not presentmatrix has a particular structure, which — after applying an
then swapping could be achieved in a very simple mannegppropriate permutation of the blocks — can be seen to be
by permuting the diagonal blocks. Temporarily admittingoordered almost block diagonal (BABD). Efficient and stable
nonorthogonal transformations, we can achieve block diagdgorithms for solving BABD systems are discussed, e.g.,
onal form by computing matriceg,, R, € R™*7z with in [12].

R, = Ry such that . )
P 0 C. How to obtain orthogonal transformations and guarantee

I —Ls Sﬁ) Sg) I Ry, S%’f) 0 backward stability
{O I } 0 s [0 I } | o Sk For the sake of numerical stability, it is important to
) ) *) avoid explicit block diagonalization and use orthogonahs-
[I —Lk} Ty, Ty [I Rk+1:| _| T 0 formations. For this purpose, one computes QR and RQ
0 I o TW |0 I 0 W factorizations
for k = 0,...,p - 1. T_his relation can be rewritten as a {Lfk} =U, {Lok } . [I =R ]=1]0 Ry ] Vir, (9)
system of matrix equations:
sWp _ 1 gk _ gk for k =0,...,p— 1, such thatly, Vj, € R(nFn2)x(nitna)
oL TR T kP 12 (7) are orthogonal matrices ard, € R"2*"2, R;, € R™ %™ are
Tiy Bevr — LTy, = —Thy, upper triangular matrices. Part|t|on|rigk7V,C conformally

which happens to be a so callegeriodic generalized With the blocks in (4) and settiny, = Vo, we obtain

(coupled) Sylvester equatiofrollowing the acronyms used S(k) (k) i gy N
in [20] we refer to it as PGCSY. Equations of this and U/ | Ve = k22 Fal (O)T (k) &
similar kind play a role in various other applications retht 0 522 0 Uiy~ 511" Bk
o period decrtetime oytoms 8] and e rumercal (1) 10, _ [
, , . particular, itYx 0 T k+1 0 U )T(k) o
can be shown that (7) has a unique solution provided that 11 T
A1) N A(H22) = (). If this condition is not satisfied then for k£ = ( — 1. From (9), it can be seen that the

smceSi(i andTii’“) are diagonal blocks of a GPRSF — thematrlcesU12 7V21 , Ly, Ry, are all invertible, which implies
eigenvalues ofl,; andIly, are actually equal and there is— by direct computation — that (6) holds for the diagonal

little need for swapping. blocks of the transformed matrices. Thus, the matridgs
andV}, yield the desired swapping (4)—(6).
B. Solution of the PGCSY In finite-precisision arithmetic, the above relations are
One way to solve (7) is to consider a Kronecker produ&lffected by roundoff error, resulting in perturbed tramsfed
reformulation matrices
&k &(k k ~(k
{ Si1 —S» } { R } _ { Si2 ] ®) Sik; ‘?%I%; ] , Zjik; zjlik; (10)
ThWZ —Tx L Tia |’ So17 5o Ty 1y




Experimentally it can be observed that the subdiagonatith F;, € R™*", F,, = F}, and the new external input
blocks $$¥) and 7{¥ are negligible compared to the restuy, the open loop system (1) is transformed into the closed
of the matrix. But it occasionally may happen, in particulatoop system
if t?;?) elgenvalue(i)oﬂu ang(l;[)gg are poorlé)separated, that Exanrr = (Ag+ BiFo)z, + Brok a
151"l > ul|S™]|p or [Ty, ||p > u||T™||r for some — (Ch + D.F.)xy, + Dyor

. : Yk (Cr + DiFi)zy + Dyvg,
k, where|| - ||r denotes the Frobenius norm of a matrix and _ o _
u is the unit roundoff. In this caseéé’f) and ngf) cannot Which is again periodic. The poles of (11) are given by the

be set to zero without sacrificing backward stability and thgigenvalues of the periodic matrix paifsy, Ay, + By Fj)-
swap must be rejected. The goal ofpole placements to move some or all of these

poles to desired locations in the complex plane. For example
D. The overall algorithm a possibly unstable system (1) can be stabilized by moving
The considerations made above lead to the following!l Poles outside or on the unit circle into the open unit disc
algorithm for swapping atin, + ns) x (n; + ny) periodic The following algorithm for pole placement is in the spirit
matrix pair (S, Tx) in GPRSF. of [27]. By applying the periodic QZ algorithm, we may
1) Compute the solutiong;, R, of the PGCSY (7) by assume without loss of generality thd,, Ay) is'in GPRSF.
solving the linear system (8). Let us furthermore assume that the last subdiagonal entry of

2) Performp QR andp RQ factorizations Ap-1 is zero, i.e., we can partition

~ (k) (k) (k) 4 (k) (k)
Ly Ly ~ — Eyy Eqy — Ay Aip — By
[I]ZUk[O}7[I Ry ]=[0 Ry VI  Ex [0 nk » Ak 0 ar » Br

~ ~ H 1xm H
3) ComputeS), = UTSVi, and Ty = UTT,Viy, for with ap,n, € R and g, € R**™. Assuming (1) to be

k=0,....p—1. completely reachable, it can be guaranteed that there is at
4) If all subdiagonal blocks$(¥). 7%)  see (10), are least onej € [0, p — 1] with 5, # 0 [22]. Then for a desired
2ol closed loop pole\, we can choose vectork), ..., f, 1 €

sufficiently small then

A ~ m
setSé’? = TQ(f) = 0 and accept swap; R™ such that

otherwise pl .
reject swap. A= 1" (s + Bifr)- (12)
k=0

Properly implemented, this algorithm requir@$p) float-
ing point operations (flops). If it is used to reorder twoChoosing i, = fre]l, one pole of the closed loop sys-
adjacent diagonal blocks in a largerx n periodic matrix tem (11) is moved to\ while the others remain the same.
pair in GPRSF then the off-diagonal parts must be updatafe can place further poles by reordering the matrix pair
by the transformation matricé, andV, which additionally (A + BiFl, Ex) so that thenth diagonal entries correspond
requiresO(pn) flops. to an open loop pole, and repeating the described procedure.

Several important details regarding the implementation of There is a lot of freedom in the choice gf;, even in
this algorithm have been omitted. If the matricés and the single-input casen = 1. To keep the scaling of the
T, have widly differing norms then a scaling step shoul€oefficients A, balanced, it is advisable to distribute the
be applied in order to avoid artificial ill-conditioning of influence of the state feedback equally over the whole period
the linear system (8), see also [15, Ex. 5]. Also, the usEor this purpose, we set = (o7 - --1,—1)A and choose
of iterative refinement for improving the accuracy of thescalars(y such that(o(: - - - ¢,—1 = sign(y) and
solution and decreasing the possibility of rejection neteds Gl |1/p — ag, = cu||Bs
be investigated. Moreover, the criterion for the decisimbé B b *lIEk
made in Step 4 should be based on a careful error analydiet some constant,. To determine this constant one needs
These and other issues will be addressed in a forthcoming solve

paper [16]. (cllBoll+ o) (el Bl +ar) -+ (el Bp-r |+ ap-1) = 7. (13)

Il APPLICATIONS This then leads to the state feedback
Besides the computation of stable deflating subspaces 1/p T
{ Crlyl P—ar)B, B # 0;
k= '

mentioned in the introduction, eigenvalue reordering is of FAE

use in a number of other computational tasks related to 0, otherwise,
periodic discrete-time descriptor systems. In the folluyyi
we illustrate two such applications, pole placement an
discrete-time optimal control.

hich satisfies (12) by construction and, moreovVi, || =
¢,| for all k. Note that (13) needs not be solved exactly to
attain near balancing.
A. Pole placement The described procedure can be easily extended to com-
plex eigenvalues if one admits periodic complex Schur forms
How to directly work on periodic real Schur forms and avoid
uy, = Frxp, + v complex arithmetic in a numerically reliable manner is not

By applying a linear state feedback law of the form



clear and subject to further investigation. Far > 1, the C. Other applications
multi-input case, the additional degree; .of.fr.eedom may be Reordering the eigenvalues of periodic matrix pairs can
used to attain higher robustness by minimizing the spectrgle

condition numbers of the closed-loop system or the normg used to reliably implement restarting and deflation tech-
. e iques in numerical methods for solving large-scale produc
of the feedback matrices or a combination of both [33]. d g'arg b

eigenvalue problems, such as the periodic Krylov-Schur and
B. LQ optimal control Jacobi-Davidson algorithms [19], [24]. Also, recently dev
Given a periodic discrete-time descriptor system (1), th@P€d algorithms [4] for computing deflating subspaces of

aim of LQ optimal control is to find a feedbaak, which structured matrix pencils to address linear-quadratianoadt
stabilizes the system and minimizes control problems for linear time-invariant systems benefit

from our algorithm.

1o T T
— T T+ u; Ru
212_;( L Qun - B, IV. COMPARISON WITH OTHERAPPROACHES

with Q; € R™*" symmetric positive semidefinite arfgl, ¢ In this section, we summarize and compare other existing
R™*™ symmetric positive definite. Moreover, we supposéechniques for reorde_ring eigen_value_s and computing deflat
that the weighting matrices are periodic, i.€4., = Q, NG subspaces of periodic matrix pairs.
and Ry, = Rj;. Under mild assumptions [6], the optimal 1) Explicit formation of matrix productsFor performing
feedback is linear and unique; it can be expressed as  the swapping (4) of an, +ns2) x (n1 +n2) periodic matrix

. B pair (Sk,Ty), one could explicitly form the matrix product

Uy, = —(Rk + Bng+1Bk) 1Bng+1Akxk.,
= _1 _1 DR _1 _1

whereX;, = Xy, is the unique symmetric positive semidef- =T, 51T, 5Sp-2--- Ty 51Ty " So, (15)

inite solution of thediscrete-time periodic Riccati equation and apply standard reordering to obtain the orthogonastran

(DPRE) formation matrixV;. The other transformation matrices can
0=CFQrCr — EL | Xy Ep_1 + AL Xp 11 Ay, (14) then be generated by propagatiig through the triangular
— Al Xy11Bi(Ry, + B Xg41By) "' Bl X1 Ay, factors [8].

Such an approach has been proposed in [17], [25] for
the casen; = ny = 1. If ny > 1 or ny > 1, triangular
o matrix-matrix multiplication is not a numerically backvaar
(Ly, M) = ([ %41@ 2 } |:Ek1 BkRkT BkD . st_a_ble (_)peration [18]. Moreover, there are serious numbr@c

’ —CpQiCr By |7 O Ay, difficulties to be expected for long products as the entries
Similarly as for the caseg), = I, [17], it can be shown Of II become prone to under- and overflow. Nearly singular
that this pair has exactly eigenvalues inside the unit disk factorsZ; " pose another source of instability. The following
under the reasonable assumption that (1) is d-stabilizaide €xample illustrates some of the drawbacks of working on
d-detectable. By reordering the GPRSF(&f,, M) we can Matrix products.

provided that allE;, are invertible. The following2n x 2n
periodic matrix pair is clol associated with (14):

compute orthogonal matricég,, Vi, € R>**2" with V., = Example 1:Let D = diag(1,107*,1072) and consider
- . . o
Vi such that the periodic matrix pai(Ey, Ax) = (I3, Q) DQx) where
Qy, are random orthogonal matrices witQ,., = Q.
S(k) S(k) T(k) T(k’) . . .
UL LyVy, = | P10 P12 UM Viq = | 11 212 For various periodg, we computed the eigenvector of the
bR 0 Ség) Pk ’ 0 T2(§) ’ matrix productll belonging to the eigenvalu~? using two

o _ ) k) _ different approaches. In the first approach, denoted by RSF
where then x n periodic matrix pair(Sy;’, Ty;") contains  pelow, we formed explicitly and computed the reordered
all eigenvalues inside the unit disk. If we partition Schur form oflI such thatl0—* appears in the top left corner.

(k) (k) Then, at least in exact arithmetic, the first column of the
Uyl U : o . .

& () orthogonal transformation matrix is the desired eigerwect
Usi' Uz In the second approach, denoted by GPRSF, we used the
reordered generalized periodic Schur form instead, yigldi
the desired eigenvector in the first column of the “outer”
transformation matrixZ,. The following table contains the
angles between the computed and exact eigenvectors.

Uy =

with Ui(f) e R™*", then

—1
Uz(lf) [Uﬂc)} = Xy Ey 1,

from which X, can be computed. The proof of this relation p =10 p=15 _ p= 20
is similiar as for the case = 1, see, e.g., [26]. We note RSF 2x1077 9x107% 2x107"
that R, can be ill-conditioned or even singular, e.g., when GPRSF 3x107'% 4x107'® 3x107'6

solving dead-beat control problems [34]. In such cases, it It can be observed that, in contrast to GPRSF, the accuracy
necesssary to avoid the inversion ®f and to work instead of the eigenvectors computed by RSF drops rapidly with
with (2n4+m) x (2n +m) matrix pairs as described in [26], increasingp, being completely polluted by roundoff error
[29]. for p > 20.



2) Collapsing matrix pairs:Collapsing the periodic ma- error analysis may help avoid unnecessary rejections in the
trix pair into a single matrix pair [2], [3], [11] offers a mer swapping algorithm. It is planned to include the reordering
robust alternative than forminf, especially when some of algorithm into a broader, publicly available software dibyr
the factorsE), are nearly singular. This approach, which wagor solving periodic eigenvalue problems, which can then
shown to be numerically backward stable fo 2, is based be used to address the applications described in Section 11l

on the following lemma.
Lemma 2 ([2]): LetUTEyX = C and VTA X = S

These developments include recursive blocked methods and
software (PRECSY) for periodic Sylvester equations, build

be the generalized singular value decomposition [14] oing on RECSY [20].

Ey, Ay € R™™*" i.e.,,U,V € R"™*" are orthogonal matrices,
X € R™" is nonsingular, andC,S € R™*™ are non-
negative, diagonal matrices. Defirg, = CV” and A, =
SUT. Then

(1]
A Eyt = B A, g

Lemma 2 turns a product of the fordi, ' A; E; ' Ay into
a product of the form(E,E;)~1(Ay4,). The successive [
application to a periodic matrix paitAy, Ey) yieldsII =
E~1A for some matrices, A € R"*™. Now, the reordered [4]
generalized real Schur form (GRSF) can be applied to
compute the outer deflating subspaces of the periodic matriy,
pair. The inner deflating subspaces can be found by a simple
substitution procedure, see [2].

Repeating the numerical experiments from Example 1, wé6]
found that collapsing led to the following angles between th
exact and computed eigenvectors belonging to the eigeelvalth
107P.

p=10 p=15
GRSF 3x 107" 7x107°9

Although such a statement does not hold in general, thi§9]
example demonstrate that GRSF can, when compared to
RSF, result in higher accuracy even for the cdge= 1. [10]
Nevertheless, the rapid loss of accuracy for increasingesl

of p is not cured by using GRSF and GPRSF remains the

p =20
1x 10792

(8]

method of choice. (11]
3) Block cyclic embedding:Lifting [13] is a popular
technique to turn a discrete-time periodic (descriptogtam  [12]

into an equivalent time-invariant (descriptor) systemedé
techniques can also be used to extract the deflating subspa%g]
of ann xn periodic matrix pair of periogh from the deflating [14]
subspaces of an embeddgd x pn block diagonal/block
cyclic matrix pair, see, e.g., [24] for more details. Beside
being more costly, it was shown in [9] that such an approadts)
may also sometimes lead to serious loss of accuracy due the
fact that the condition number of the deflating subspaces c

be considerably increased by lifting.
[18]
V. CONCLUSIONS (19

A new method for reordering the eigenvalues of a periodic
matrix pair in generalized periodic real Schur form was pre-
sented. Unlike other approaches, this method is guarante[é%J
to be numerically backward stable, an important property to
attain high accuracy in the resulting deflating subspaces, &1l
confirmed by the numerical experiments.

Ongoing work, to be reported in [16], is directed towards
making the presented approach more robust and efficient.
For example, solving the arising periodic Sylvester equnsti [22]
by more accurate methods in combination with a careful
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