3,802 research outputs found

    Parallel algorithms for solvable permutation groups

    Get PDF
    AbstractA number of basic problems involving solvable and nilpotent permutation groups are shown to have fast parallel solutions. Testing solvability is in NC as well as, for solvable groups, finding order, testing membership, finding centralizers, finding centers, finding the derived series and finding a composition series. Additionally, for nilpotent groups, one can, in NC, find a central composition series, and find pointwise stabilizers of sets. The latter is applied to an instance of graph isomorphism. A useful tool is the observation that the problem of finding the smallest subspace containing a given set of vectors and closed under a given set of linear transformations (all over a small field) belongs to NC

    Fast Quantum Fourier Transforms for a Class of Non-abelian Groups

    Full text link
    An algorithm is presented allowing the construction of fast Fourier transforms for any solvable group on a classical computer. The special structure of the recursion formula being the core of this algorithm makes it a good starting point to obtain systematically fast Fourier transforms for solvable groups on a quantum computer. The inherent structure of the Hilbert space imposed by the qubit architecture suggests to consider groups of order 2^n first (where n is the number of qubits). As an example, fast quantum Fourier transforms for all 4 classes of non-abelian 2-groups with cyclic normal subgroup of index 2 are explicitly constructed in terms of quantum circuits. The (quantum) complexity of the Fourier transform for these groups of size 2^n is O(n^2) in all cases.Comment: 16 pages, LaTeX2

    Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm

    Get PDF

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Graph Isomorphism for unit square graphs

    Get PDF
    In the past decades for more and more graph classes the Graph Isomorphism Problem was shown to be solvable in polynomial time. An interesting family of graph classes arises from intersection graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved in polynomial time. Since the recognition problem for this class of graphs is NP-hard we can not rely on standard techniques for geometric graphs based on constructing a canonical realization. Instead, we develop new techniques which combine structural insights into the class of unit square graphs with understanding of the automorphism group of such graphs. For the latter we introduce a generalization of bounded degree graphs which is used to capture the main structure of unit square graphs. Using group theoretic algorithms we obtain sufficient information to solve the isomorphism problem for unit square graphs.Comment: 31 pages, 6 figure
    • …
    corecore