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A number of basic problems involving solvable and nilpotent permutation groups are 
shown to have fast parallel solutions. Testing solvability is in NC as well as, for solvable 
groups, finding order, testing membership, finding centralizers, finding centers, finding the 
derived series and tinding a composition series. Additionally, for nilpotent groups, one can, in 
NC, find a central composition series, and find pointwise stabilizers of sets. The latter is 
applied to an instance of graph isomorphism. A useful tool is the observation that the 
problem of finding the smallest subspace containing a given set of vectors and closed under a 
given set of linear transformations (all over a small field) belongs to NC. 0 1988 Academic 

Press, Inc. 

1. INTRODUCTION 

In recent years the asymptotic complexity of decidable group-theoretic problems 
has received much attention (e.g., [At75; Ba79; FuHoLu80a; Ho82; Lu82; 
BaKaLu83; McCo83; AvMa84a; AvMa84b; Ba85; Ka85a; Ka85b; Lu87; Re85; 
McCo87; Co85; KaTa]). The short-term impact of this work on computational 
group theory remains in question (it is an amazing fact that many practical group- 
theoretic algorithms in current use have non-polynomial worst-case time com- 
plexities [Ca84]), but the relevance of such work to the theory of computation is 
beyond doubts. For example, many subcases of the graph isomorphism problem 
(one of the few “classical” problems in the class NP believed not to be NP-com- 
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plete), were solved in polynomial time using group-theoretic arguments [Ba79; 
FuHoLu80b; Lu82; Mi83]. Another example is the study of matrix group 
problems, which led to “Arthur versus Merlin” games and to the introduction of a 
finite complexity hierarchy collapsing “just above” NP [BaSz84; Ba85J Yet 
another example is the existence of several free group problems complete for the 
class P under log space reducibility [AvMa84a; AvMa84bl. 

Naturally, the computational complexity of group-theoretic problems depends 
critically on the input description of the groups. This is illustrated best of ail by the 
membership problem, which consists of determining whether a given test element g 
belongs to a specified group G. When G is specified by generators (indeed when G is 
even the trivial subgroup) within a finitely presented group then a result of 
Novikov-Boone [Ro73, p. 2981 shows that membership is undecidable. When G is 
a group of matrices over a finite field GF(p), membership is not known to be in NP 
[Ba85]. When G is a finite permutation group specified by generating per- 
mutations, membership can be decided in polynomial time using a variant of Sims’ 
algorithm [Si70; FuHoLu80al. When G is given explicitly by multiplication table, 
membership is a non-issue. 

This paper is concerned solely with finite permutation groups. It is well known 
that all finite groups can be represented as permutation groups. Moreover, 
generating permutations provide economical descriptions of exponentially large sets 
(the groups generated). The sequential complexity of problems involving per- 
mutation groups specified by generating permutations (from now on we assume all 
groups so specified) has been studied intensively. Polynomial time algorithms now 
exist to find blocks of imprimitivity [At75], to test membership and to compute 
order [Si70; FuHoLu80], to compute generating permutations for groups occur- 
ring in derived series [FuHoLu80], to compute a composition series [Lu87], and 
to compute the Sylow subgroups of a group [Ka85a; Ka85b]. 

A natural question to ask about problems with good sequential solutions is how 
efficiently such problems can be solved on parallel computer models. We address 
this issue here and develop several new fast parallel algorithms for dealing with per- 
mutation groups. Specifically, we are concerned with the complexity class NC 
[Pi79; Co85], identified informally as the class of problems solvable in time 
(log n)“ for some k using a polynomial number of processors (hence problems in 
NC have polynomial time solutions [FiPi74; Sc76; Bo77]. We do not discuss the 
immediate practical merits of the class NC (see, for example, [Co85; ViSS]. for pros 
and cons, respectively). Rather we adopt the viewpoint that the subclasses NCk 
provide an interesting hierarchy which bears witness to the amount of “decom- 
posability” (translating both into small parallel time requirements and into small 
sequential space requirements, see [Bo77; Co81 I), and thus to the degree of 
difficulty, of a problem. 

Prior to the work reported here, the parallel complexity of permutation group 
problems had been investigated in [McCo83; Mc84; Re85; McCo87]. McKenzie 
and Cook exhaust the case of Abelian permutation groups by showing that 
problems ranging from determining membership to obtaining a complete cyclic 
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decomposition belong to the class NC4 (their weaker statement that such problems 
belong to “random” NC can indeed be strengthened owing to Mulmuley’s com- 
pletion of the problem of computing ranks of matrices over small fields in NC 
[Mu87]). The techniques used, combining the regularity property of transitive 
Abelian groups with the ability to express membership testing as solving a single 
system of linear congruences, do not seem to generalize. McKenzie [M&4] com- 
pares non-Abelian permutation group problems with respect to their parallel com- 
plexity and develops an NC4 nilpotency test. Reif [Re85] suggests a probabilistic 
NC membership test in a p-group assuming an oracle that delivers uniformly 
distributed random elements from the group. 

Our main results are NC upper bounds for fundamental questions involving 
nilpotent and solvable groups which were not long known to have polynomial time 
solutions. Solvable groups constitute the largest class of groups that can be 
obtained using Abelian building blocks, that is, solvable groups have Abelian com- 
position factors (the name “solvable” comes from Galois theory, as solvable groups 
are those which play a role in the expressibility of roots of a polynomial by radicals, 
see, for instance, [Ar42]). For solvable groups we show how to determine mem- 
bership, how to compute order, normal closures, centralizers, centers, derived 
series, and composition series (see next section for definitions) in NC. This answers 
several open questions from [McCo87; Mc84]. The more restrictive nilpotent 
groups are characterized as being direct products of groups of prime power order. 
For nilpotent groups we further develop NC algorithms to compute pointwise set 
stabilizers and central series. We also suggest applications of the pointwise set 
stabilizer algorithm, including instances of the graph isomorphism problem. 

The results of this paper were first announced in [LuMc85], the randomness in 
that paper having been obviated by [Mu87]. Recent work of Luks [Lu86] and 
Babai et al. [BaLuSe87] has since shown that general permutation group 
management (including order, membership, and pointwise set stabilizers) is in NC. 
In these extensions, the present paper has remained a fundamental tool. The techni- 
ques are not only necessary for the strictly solvable or nilpotent subclasses, but they 
are a component in the management of any groups that have some Abelian com- 
position factors. 

The organization of the paper is as follows. Section 2 introduces notation and 
background. Section 3 introduces notions to facilitate the manipulation of solvable 
groups. Section 4 discusses a linear algebra problem whose NC solution is fun- 
damental to most subsequent algorithms. Section 5 presents nilpotent group 
algorithms. Section 6 solves the important pointwise set stabilizer problem for 
nilpotent groups and suggests applications to the setwise stabilizer problem and to 
graph isomorphism. Section 7 shows how to extend some of the techniques 
developed in Section 5 in order to provide solvable group algorithms. Finally, 
Section 8 concludes with open questions and suggestions for further work. 
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2. BACKGROUND AND NOTATION 

We assume familiarity with the complexity classes NC?, NC [Pi79], and P (see 
[HoU179]) generalized to include more than just decision problems (see [CoSS]). 
Recall that NCk is defined as the class of problems solvable by an O((log n)“) depth 
and polynomial size uniform family of bounded indegree Boolean circuits, and that 
NC = Uk NCk. Loosely speaking NC can thus be thought of as the class of 
problems solvable in polylog time on a parallel computer of feasible size and a 
reader ill at ease with Boolean circuits should adopt the latter point of view. 

Descriptions of all the circuits discussed in this paper are computable by a Turing 
machine in log space, and these circuits probably meet the more stringent “alter- 
nating log time” uniformity condition introduced by Ruzzo [Ru81] and favored by 
Cook [Co851 (these different uniformity criteria may affect the subclass NC’). Our 
notion of NC’-reducibility is that in [Co85], except for our use of log space unifor- 
mity (log space uniform NC’-reducibility is also used in [McCo87] to compare 
parallel complexities of Abelian permutation group problems). Occasionally we 
speak of NC*-reducibility. We say that problem A NC’-reduces to problem B if B is 
solved by an NC* family of circuits which is allowed the use of O(log n) oracle gates 
for A along any path from an input to an output. Note that NC“ for any k is not 
necessarily “closed” under NC*-reducibility, but that NC is. 

Our group-theoretic notation is mostly that of [Wi64]. We write H Q G when H 
is a subgroup of a group G. With S a set of elements in a given group, (S) 
represents the subgroup generated by S. Let g, h belong to a group G. The com- 
mutator [g, h] is defined as the element g ~ ‘h ~ ‘gh and we write g” for the conjugate 
of g by h, that is, for K’gh. The degree of a permutation group G is the number of 
points actually moved by G, that is, not fixed by all elements in G. Group G acts on 
a set 52 if there is a homomorphism 4: G -+ Sym(Q). In such a case we write CI~ for 
the image of c1 E Sz under g E G, and TR for the set of images of elements of Tc 52 
under g. G acts faithfully on 52 if G is isomorphic to its image within Sym(Q). 
Group G, is the setwise stabilizer of I-, that is, the group of all elements in G which 
map r to itself. The set r s Q is a G-orbit if r= { ~1~ 1 g E G} for some o! E Sz. If r is 
a union of G-orbits, then Gr denotes the constituent of G on r, that is, the image of 
the induced G-action on r. Group G acts transitively on rG 52 if r is a G-orbit; in 
that case Gr is a transitive constituent. When G acts transitively on Q, a G-block is 
defined as any set rs Sz for which either Tg n r= @ or Tg = r holds for each 
gg G. If r is a G-block then G acts naturally on the G-block system {Tg 1 gg G). A 
G-block system partitions Sz into G-blocks of equal size. We say that G acts 
primitively on Sz if (it acts transitively on Q and) Q cannot be broken up into non- 
trivial (i.e., sizes # 1 or IQ1) G-blocks. 

We refer the reader to [Ha591 for basic facts about Abeliun (or commutative) 
groups, normal closures, centralizers, centers, commutator subgroups, composition 
series, derived series, solvable groups, central series, and nilpotent groups, though we 
recall the definitions of these concepts below. The normal closure of a subset S in a 
group G, denoted NCL,(S), is the smallest normal subgroup of G containing S. 
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When G and H are subgroups of some larger group, we say G normalizes H if H is 
normal in (G, H). The centralizer C,(H) of H in G is {g E G 1 gh = hg for each 
h E H}. The center of G is C,(G). The commutator subgroup [G, G] of a finite group 
G is defined as ([g,h] lg,h~G). Let G=GO>G,> ... >Gk be a subnormal 
series for G, that is, one in which each term is normal in the preceding term. This 
series is a composition series for G if for each i G,, r is a maximal normal subgroup 
of G,. The series is the derived series for G if Gj+ I = [G,, Gil for each i; group G is 
solvable if the trivial group appears in its derived series. Finally, the series is a 
central series if for each i G,fG,+, is contained in the center of G/G,, r ; group G is 
nilpotent if it possesses a central series in which the trivial group appears (alter- 
natively G is nilpotent if it is a p-group, that is, a group of prime power order, or if 
it is a direct product of p-groups for various p; note that Abelian groups are 
nilpotent). An Abelian group is said to be elementary Abelian if for a fixed prime p 
each non-trivial element of the group has order p. 

Let G = (S) and let T be a complete set of right coset representatives of a sub- 
group H in G (that is, T contains exactly one element from each coset Hg of H in 
G). Then { ts[b(ts)] PI 1 t E T, s E S}, where 4: G + T is the corresponding coset 
representative function, is the set of Schreier generators of H relative to S and T 
(for a proof that the Schreier generators generate Z-I see Lemma 7.2.2 in [Ha59]). 

For our purposes, an algebra is a vector space equipped with an associative mul- 
tiplication that distributes over linear combinations. For example, a set of matrices 
over Z, closed under matrix addition and under matrix multiplication is an algebra 
over Z,. 

Throughout this paper we assume a reasonable binary encoding of all the 
problems discussed (see, for instance, [Mc84]), and we follow [Mc84] in referring 
to an integer whose absolute value is in O(n), when n is the length of the encoding 
of a problem instance, as a tiny integer. An example of a tiny integer is the degree of 
a permutation group specified by generating permutations. From now on, “com- 
puting a group” will always mean “computing a set of generators for the group.” 

3. PRELIMINARIES 

This section discusses the notions of structure forest and of power-commutator 
basis. Our algorithms use these concepts to transform the arbitrary set of input 
permutations generating a (solvable) group into a manageable description of the 
group. 

DEFINITION (structure forest). A structure forest for a permutation group G is a 
forest on which G acts as automorphisms (fixing the roots of the individual trees), 
whose leaves form the permutation domain, and such that the stabilizer within G of 
any node (= set of subtended leaves) acts primitively on the children of this node. 

When G is nilpotent, the stabilizer of a node in a structure forest for G acts as a 



44 LUKSANDMCKENZIE 

cyclic group of prime order on the children of this node (this can be seen as a con- 
sequence of remarks on page 66 of [Ha59]). When G is solvable, the Palfy-Wolf 
bound on the order of primitive solvable groups [Pa82; Wo82] states that the 
stabilizer of a node restricted to the children of this node has order at most 
24U’/3m3.24399- (m the number of children). 

Typical sequential methods for constructing such a forest (requiring at a 
“primitive” node, the subgroup fixing the blocks) lead either to “blow-ups” in the 
sizes of generating sets, or to sequential “sifts” through linear-height towers of 
groups. As had occurred independently to Reif [Re85], we can avoid these pitfalls, 
so that 

PROPOSITION 3.1. NC3 contains the problem of computing a structure forest for 
an arbitrary permutation group G. 

Proof: First we break up the point set into orbits [McCo83]. (Each orbit gives 
rise to a tree in the forest and we build each tree in parallel.) Now if G acts 
transitively on Q, if r is a G-block, and if A z r~ 52 is a G,--block, then A is in fact 
a G-block. This suggests picking a non-trivial G-block of smallest size, say r (in 
NC2 [Si67; Mc84; Re85]). The previous statement guarantees that G, then acts 
(transitively and) primitively on ZY Hence r can be made a set of leaves with 
common parent. Images of r under G yield the other subtrees at the bottom level. 
The procedure is repeated with the parents so created (in effect with the G-action 
on the G-block system containing r). After log n iterations (hence NC3) each tree is 
complete. 1 

We now define what we mean by a “manageable” group description: 

DEFINITION (power-commutator basis of a group). A power-commutator basis 
(PCB) of a group G is an ordered sequence (b,, pl), . . . . (b,, p,), b,E G, pi> 1 an 
integer, 1 < i < m, such that 

(1) each g E G is uniquely expressible in a “canonical form” b;l ... b$, 
06.si<p,, O<i<m, 

(2) for each pair of integers i, j, 1 < i < j < m, the canonical expression for the 
commutator [b,, hi] satisfies si = s2 = . . . = si = 0, and 

(3) for each integer i, 1 < i< m, the canonical expression for the element by! 
also satisfies .si = e2 = . . . = si = 0. 

Observe that a PCB for G directly reflects part of the group’s structure. For 
example, the order of G is pip2 “.P,,,. Also, it is easy to verify by induction that 
(bi, P,), .*.T (b,, p,) is a PCB for Gi= (bi, . . . . b,), and so G,+i is a normal sub- 
group of G, with cyclic quotient. It follows that a PCB for a group G exists if and 
only if G is solvable. 

Remark. In recent work [Lu86; Ba86; BaLuSe871, the PCB tool is replaced by 
a “strong generating set” (SGS). As used earlier in the sequential-computation 
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settings of [Ba79; FuHoLu801, an SGS is comprised of the union of coset represen- 
tatives for the Gi mod Gi+ 1 in any polynomial tower, i.e., any subgroup chain 
G=G,>G,> . . . > 1, in which the indices [G,: Gi+ I ] are polynomially bounded. 
(This generalized a notion of Sims [Si70] who made use of the case where Gi is the 
subgroup of G that fixes the first i points in the permutation domain). Of course, an 
SGS is easily obtainable from a PCB by taking the Isi1 distinct powers of bi to 
represent the cosets of G, mod Gi+ i. One can, in fact, modify the algorithms herein 
to conform to the construction of SGSs in general groups. One typical change 
would be in the description of elements to be “sifted” in Proposition 3.2 (compare 
with section 5 of [Lu86]). Despite the temptation to unify the notation and 
definitions, we have retained the PCBs in this paper. It appears to be the natural 
way to deal with groups that are known to be solvable. 

For the purpose of computing PCBs it is necessary to extend the definition of 
PCBs as follows. 

DEFINITION (PCB of a group relative to a normal subgroup). Given K a normal 
subgroup of a group G, a power-commutator basis for G relative to K (PCB of 
G rel K) is an ordered sequence (b,, p,), . . . . (b,, p,), big G, pi> 1 an integer, 
1 <i<m, such that {(biK, P~)},,~,, is a PCB for G/K. With respect to this PCB 
“sifting an element g E G” means “computing the unique h E K such that the product 
gh-’ is expressible in the form 6;’ .. . bz, 0 < .q < pi, 1 d i 6 m.” If the PCB is 
understood, we denote the induced function G + K by SIFT; i.e., in the previous 
sentence, h = SIFT(g). 

Observe that if tj: G + H is a group epimorphism with (bi, pi), < i<m a PCB for . . 
H, then (II/-‘( pi), <i<m is a PCB for G rel Ker +. 

Our computation of PCBs hinges on the following proposition, which charac- 
terizes a normal subgroup K in terms of a PCB for G rel K. 

PROPOSITION 3.2. Let K be a normal subgroup of G, and let { (bi, p,)}, Gidm be a 
PCB for G rel K. Denote by S the set of images under SIFT of the set comprised of 
generators for G, of commutators [bj, bi], 1 < i < j ,< m, and of powers bf: 1 < i < m. 
Then K= NCL,(S). 

Proof: That NCL,(S) % K follows by normality of K. So let kE K. Since 
generators for G were sifted, k can be written as a product of PCB elements and of 
elements of S. Migrating occurrences of bl to the left (given that b;‘sb, E NCL,(S) 
whenever SENCLJS) and that b;‘bjb, can be expressed without b, for j> 1, the 
latter because [bj, b,] = b: . ..bzs where s= SIFT([b,, b,]) belongs to S by 
definition) and reducing the resulting exponent of b, modulo p1 (reexpressing bfl as 
required), then repeating for b,, b,, . . . . k is expressible as 

&I&. . . b&mu m 3 O<Eicpi, 1 <iQm, 

with c E NCL,(S) E K. It follows that 6;’ ... b$ E K and hence that 
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E,CE2Z . . . =s,=O (by the uniqueness criterion in the definition of PCB for 
G rel K). Therefore k E NCL,(S). Hence K s NCL,(S). 1 

The next proposition will allow us to break up the computation of a PCB into 
several stages. 

PROPOSITION 3.3. Let K, 6 K, 6 G with K, and K, each normal in G. Then a 
PCB for G rel K, is obtained by appending a PCB for K, rel K, to a PCB for 
G rel KZ. 

Proof To show that [bj, bi] is expressible appropriately when hi belongs to the 
PCB for G rel K, and b, to that for K, rel K,, we appeal to the normality of K,. 
Other properties are straightforward to verify. 1 

4. LINEAR ALGEBRA 

This section is devoted to the problem LINEAR CLOSURE which consists of 
computing a basis for the smallest vector space containing a prescribed set of vec- 
tors and closed under the action of a prescribed set of linear transformations (all 
over a tiny field Z,). As we suggest below, LINEAR CLOSURE arises naturally 
during the computation of PCBs, though it seems to be of independent interest. 

LEMMA 4.1. Given a set T of d x d matrices over Z, (p tiny) which includes the 
identity matrix, a basis for the linear span zi of all products of i matrices in T can be 
computed in NC, for i= 1, 2, . . . . d2. 

Proof: Observe that ra + b is spanned by the products of basis elements of r, and 
TV. Hence in j stages it is possible to compute a basis for the subspace TV,, by 
forming in parallel at the jth stage the product of each pair of basis matrices 
for z2,-I, and then by computing in NC a basis for the new span using the 
techniques in [BoGaHo82] supplemented with [Mu87]. At most 2 log d stages 
therefore suffice to compute bases for each 7i with i a power of 2. But then 
obtaining bases for the other 7, can be done for each i in parallel, by combining the 
appropriate 721. I 

THEOREM 4.2. NC contains the following problem (LINEAR CLOSURE): Given 
a subset S of Z$ (p tiny), and a set T of linear transformations of Zz (described by 
matrices), find (a basis for) the smallest subspace that contains S and that is closed 
under the action of T. 

Proof First we obtain a basis B for the matrix algebra with identity, 7, 
generated by T, and second we compute a basis for V= Span(BS) E Z:. Observe 
that a subspace of Zi is closed under T if and only if it is closed under 7 which is 
true if and only if it is closed under B. It follows that V is the desired subspace. 
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We analyse the parallel complexity of these two steps. We may assume that T 
contains the identity transformation for the addition of the latter does not affect the 
desired output. Thus, in the notation of the preceding lemma, r0 c r, c r2. . . . Since 
the space of linear transformations of Zi has dimension d2, there are at most d2 
strict inclusions in this sequence. But, as soon as ri = zi+ 1, the sequence is stable 
thereafter at t. Thus r = rdz and so computation of B is in NC by Lemma 4.1. Com- 
putation of a basis of V is then straightforward linear algebra, in NC by 
[Mu87]. 1 

The next technical lemma focuses on a scenario in which LINEAR CLOSURE 
arises in our algorithms. Let there be given: 

-groups G and L with G normalizing L, 
- a subset S of G n L, and 
- a normal subgroup M of L that is also normalized by G and such that L/M 

is a direct product of cyclic groups of prime order (for various primes); we assume 
a representation domain in which the cyclic factors of L/M are known and in which 
we can work within L/M in NC. 

LEMMA 4.3. A PCB for NCL,(S) rel(G n M) can be computed in NC. 

Prooj Let h,, h,, . . . . h, E L/M be elements of prime power order such that 
LJM= (h,) x (h,) ... x (h,), and consider first the case in which L/M is an 
elementary Abelian p-group. For each generator g of G and for each hi in parallel, 
we compute the image of hi under the automorphism of L/M induced by 
conjugation by g, and we build matrix descriptions of the linear transformations 
induced by conjugation by generators of G. Since NCL,(S)/M is the smallest 
Z,-subspace of LJM containing the Z,-vectors in SM and closed under the induced 
linear transformations, a basis for this smallest Z,-subspace is computable in NC 
by Theorem 4.2. An important remark is that all computations carried out within 
L/M are performed simultaneously, with inverse images, in L, so that the inverse 
images of the computed basis (which are automatically still in G) provide the 
desired PCB for NCL,(S) rel( G n M). 

Now suppose that various primes occur as orders of the elements hi, and let p be 
such a prime. By raising an element in S to an appropriate power (see [McCo87]), 
we can get rid of all but the “p-part” of that element. Now since conjugation by G 
necessarily preserves the p-part of L/M, we can work on the “p-part” of 
NCL,(S)/(G n M) independently, exactly as in the elementary Abelian case 
discussed above (using the “raised” elements of S instead of S directly). We do this 
in parallel for each prime occurring in L/M, and the union of the PCB elements 
computed independently for each prime from the desired PCB for NCL,(S) 
rel(G n M). 1 

571/37/L-4 
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5. NILPOTENT GROUPS 

An essential tool for dealing with permutation groups is a membership test. The 
permutation group membership problem (GM) consists of determining whether a 
given permutation belongs to the generated group. Furst, Hopcroft and Luks 
showed that a variant of Sims’ algorithm [Si70] for GM could be implemented in 
polynomial time [FuHoLu80a], but the only subcase known to be in NC was that 
of Abelian groups ([McCo83], see Introduction). [Mc84] further shows that GM 
for elementary Abelian groups is NC’-equivalent to computing the rank of matrices 
over tiny fields Z,. 

Asymptotically fast sequential algorithms for testing membership in an arbitrary 
permutation group G proceed by first constructing a linear length tower of sub- 
groups of G fixing progressively more points [FuHoLu80a]. The set of “strong 
generators” computed by these algorithms is the union of complete sets of coset 
representatives for each successive quotient space in this tower. Not only does this 
procedure not seem to parallelize, but even if a set of strong generators were given 
as input, it would appear that one could only “sift” the test permutation through 
the underlying tower, one notch at a time, resulting in a linear time parallel 
solution at best. 

Our new GM algorithm for nilpotent G proceeds instead by computing a PCB 
for G. This is done by constructing a (normal) series of length log n, where n is the 
size of the point set on which G acts, through which it is possible to “sift” group 
elements in NC. For nilpotent groups, the linear length tower of the last paragraph, 
fixing progressively more points, will be computable in NC also, but only following 
the development of our pointwise set stabilizer algorithm in the next section. 

THEOREM 5.1. Computing a PCB for a nilpotent group G belongs to NC. 

Proof Let F be the structure forest for G as computed per Proposition 3.1. 
Consider level i, 0 < i < log n, as the level of all the nodes at distance i from a root 
in F (n is the degree of G). Denote the action of G on nodes at level <i by di. Note 
that the kernel of this action, Ker di, fixes all nodes at height <i and that G/Ker $i 
may be viewed as the induced action on the forest obtained by pruning all trees to 
height i. These kernels form a log n height group tower of normal subgroups of G 
and we proceed, inductively, finding PCBs for the quotients G/Ker +i (employing 
Proposition 3.3). So suppose inductively that we have a PCB for G rel Ker dk, and 
that with respect to this PCB we can compute SIFT in NC. We write S for a 
known set (computed in NC by sifting, Proposition 3.2) for which Ker bk = 
NCL,(S). It s&ices to show how to extend our PCB to a PCB for G rel Ker & + i . 

At each level k node in parallel we compute in NC Schreier generators for the 
subgroup of G stabilizing that node. To see how to do this for the stabilizer G, of a 
node a, observe that a complete set of coset representatives for G, in G, with an 
easy-to-compute representative function, is obtained by keeping track of an element 
of G sending a to /I for each node /I found to belong to the G-orbit containing CI (as 



PARALLEL ALGORITHMS 49 

part of an NC computation). Note that the number of Schreier generators for each 
stabilizer of alevel k node is at most the number of generators of G times the num- 
ber of level k nodes. Each stabilizer acts primitively, thus as a cyclic group of prime 
order, on the children of the corresponding level k node. We form a group L, which 
G normalizes, by taking the direct product of these cyclic constituents of the 
stabilizers. (There are other ways to obtain a suitable L; we follow this one with a 
view toward the generalization to the general solvable case.) Now, writing M for 
Ker h+l and observing that L/M acts faithfully on the level k + 1 nodes, we find 
ourselves in the scenario described prior to Lemma 4.3. Hence we apply that 
proposition in order to compute a PCB for NCL,(S) rel(G n M) in NC. Finally, 
since NCL,(S) = Ker dk and G n A4 = Ker &+ r, we can append the PCB for 
Ker dk rel Ker 4k + r to that for G rel Ker dk (already available inductively), obtain- 
ing a PCB for G rel Ker 4k+ 1 by Proposition 3.3. We point out that one can sift 
through the new PCB by sifting, in succession, through the two PCBs that form it; 
hence, the process remains in NC (sifting through the first PCB is in NC by the 
induction hypothesis, and sifting through the second PCB involves expressing an 
arbitrary element of L/M in terms of the generators of the cyclic factors of L/M, 
also in NC by [McCo87]). 1 

We can thus settle an open question from [McCo87]: 

COROLLARY 5.2. In a nilpotent group G, order computation and membership 
testing belong to NC. This holds, in particular, when G is a p-group. 

Proof: The order is readily computed from a PCB for G. To test membership of 
t in G we “sift” through the logarithmic length series of groups Ker dk (fixing suc- 
cessive levels in a structure forest for G and explicitly known from the PCB for G) 
as follows. In the notation of the proof of Theorem 5.1, assume inductively that an 
element g, E G is known satisfying tg; l E Ker #k (that is, g, and t have identical 
actions on the structure forest truncated to height k). The next “sifting” stage seeks 
g, + r E G satisfying tgFJ 1 E Ker tik + 1. For this we seek a solution h E Ker 4k (if one 
exists) to the congruence h = tgi l mod(Ker 4 k+ i); this amounts to finding a 
solution (if one exists) to a system of non-homogeneous linear equations in the 
direct product of vector spaces Ker #,/Ker #k+ r, for which a convenient represen- 
tation domain is available in the level k + 1 nodes of the structure forest. This 
system can be solved in NC by [Mu87; BoGaHo821. If h is found then 
g, + r = hg, E G satisfies tg;: r E Ker #k + I ; otherwise we conclude t $ G. a 

The following result forms an important tool in several subsequent algorithms. 

THEOREM 5.3. Computing the normal closure NCL,(H) of a subgroup H of a 
nilpotent permutation group G belongs to NC. 

Proof: Writing N for NCLJH), we compute a PCB for N by duplicating the 
strategy described in the proof of Theorem 5.1. What changes is the specification of 
the elements whose images under SIFT, given a PCB for N rel(Ker 4k n N), form a 
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set S for which Ker bk A N = NCL,(S) (Ker bk is the kernel which “shrinks” from 
G to 1 in @log n) stages). The proof of Proposition 3.2 extends provided we now 
sift : 

(i) the commutators and powers (as before) of the PCB elements of N 
rel( Ker dk n N), 

(ii) the generators of H, 
(iii) each PCB element conjugated by each generator of G. 

The sifting of set (iii) guarantees normality (of N/(N A Ker $k + I ) in G/Ker dk + , ) 
after the spanned “vector space” is closed up under the action of G and its basis 
tacked onto the PCB for N/(N n Ker #J. 1 

Let G be a permutation group specified by generators and let 4 be an NC-com- 
putable G-action (that is, the permutation d(g) is computable in NC for any g E G). 
Problem KERNEL consists of computing Ker 4. 

THEOREM 5.4. When G is nilpotent KERNEL is in NC. 

Proof: In NC we can compute a PCB for d(G) by Theorem 5.1 and hence also a 
PCB for G rel Ker 4 by having kept track of inverse images. Then sifting through 
the latter PCB yields S such that Ker 4 = NCL,(S) (Proposition 3.2), from which 
we compute Ker 4 by Theorem 5.3. 1 

THEOREM 5.5. Let G be a permutation group in a class of groups X and let H be 
an arbitrary permutation group such that G normalizes H. Then computing the 
centralizer C,(H) NC2-reduces to solving KERNEL for the class X. 

Proof: The technique is a parallelized version of an algorithm in [Lu87]. Write 
C for C,(H) and B for the relevant point set. We form, for each generator h of H, 
the set 

Observing that g E G commutes with a generator h of H if and only if g (on Q x Q) 
stabilizes r,,, imagine Q x 52 colored (in NC) in such a way that two points share a 
color if and only if they belong to exactly the same set r,,. We claim that by 
refining the color partition (adding colors) until each intersection of a color class r 
with an image under G of some other class is either empty or equal to r (hence 
until each class is a G-block if we extend the definition of block to the case of non- 
transitive G), we maintain the property that g E G preserves each color class if and 
only if ge C. We then obtain C as the kernel of the action of G on the set of color 
classes. It remains to analyze the complexity of the refinement process and to prove 
our claim. 

As to the former, we begin by relining until each class is wholly contained in a 
G-orbit. Then we work on each G-orbit in parallel, seeking in parallel a non-trivial 
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intersection between certain images under G of the color classes. To determine these 
images, first expand the set of generators of G to a collection @ that includes, for 
each X, y an element g E G such that xg = y. In each round (of at most 2 log n 
rounds), we use the images under @ of the color classes to refine the color partition. 
Continue until the set of color classes is stable under the action of @ (thus forming 
a G-block system on the orbit). We measure the progress in terms of the size m of 
the smallest color class. Suppose we do not yet have a block system. If all classes 
have size m, at least one class will be partitioned in the round and at least one part 
has size <m/2. If the classes are not uniform in size then the images of a size m 
class will cut all classes to size 6m in the round; if any of these are strictly smaller 
than m then the next round will partition the original size m class (if that has not 
already happened) and at least one segment has size <m/2. 

To prove our claim, note that G normalizing H implies that C is normal in G. 
Hence if C preserves color class r then, for any g E G, Tgc= rgcg-lcg) = Tg is 
preserved by C also. In other words we lose no element of C if we insist on 
preserving not only each original color class r but P for each gc G as well. That 
is, we lose no element of C if we refine until each class is a G-block. 1 

COROLLARY 5.6. Let H be an arbitrary permutation group normalized by a 
nilpotent permutation group G. Computing the centralizer C,(H) eelongs to NC. 1 

A special case of Corollary 5.6 involves finding centralizers of normal subgroups 
(when H < G) and, if H = G, we get an important structural result: 

COROLLARY 5.7. The center of a nilpotent permutation group can be computed 
in NC. 1 

Even more structural information on a nilpotent group is attainable: 

THEOREM 5.8. A central series for a nilpotent group can be computed in NC. 

Proof: Suppose G = (S). We may assume that G is a p-group, for general 
nilpotent G can be factored in NC as a direct product of p-groups [Mc84] and it is 
an easy matter to reassemble central series of the factors into one for G. In the 
notation of the proof of Theorem 5.1, we denote Ker tik by G”“. Then we have 
constructed a normal series 

G = G(O) > G(l) > . . . > G’“’ = 1 

in which each quotient Gck’/G (k+ ‘) denoted below by V, is an elementary Abelian 
p-group (vector space over Z,). Furthermore, we have a convenient representation 
domain in which to work with V in the k, k + 1 slice of the structure forest. We 
need to show that, for each k, we can insert G-normal subgroups 

G’k’=H(O)>H(l)~ . . . >ff(“d=G(k+l) 
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SO that [G, H”‘] < H(-‘+‘I. Equivalently, we need to insert G-invariant subspaces 

so that, for g EG, UE V”‘, u- llR is in V(j+‘) (note that we switch to the additive 
notation in V in viewing [g, u]). Each g in G induces a linear transformation t, 
(describable in NC as an Z,-matrix, in the spirit of the proof of Lemma 4.3) of V 
where t,(o) = u - ug. Let T = { I,~ 1 s E S}. Using Lemma 4.1 we compute zi, the linear 
span of the set of all products of i elements from T, for all i= 1, 2, . . . . dim(V). We 
claim that we may take V”’ = z,(V). It is immediate that V(j+ ‘) = Span T( V(j)), so 
that Y(j) > V(j+ i) follows inductively from V> V (‘I To see that T/(j) is G-invariant, . 
it sulIices;o note that it is invariant under S, but, for s E S, v E V(j), 

u~=v-- * cujE y(i)+ v(J+l)~ y(j) 

This equation also gives the congruence 

V~SU mod(V(j+i)) 

for all g in a generating set, and so the congruence holds for all gE G, whence 
v - ug E I/(.j+‘). Finally, we need to show that, if m = dim(V), I’(“) = 0. For this, 
recall that the nilpotency of G implies that there is an M so that, for all h, h,, 
h 2, . ..> h, E G, 

[hM . . . Ch,, CA,, hll...l= 1. 

But this implies that t,,,, = 0. Knowing, then, that the sequence V(O) > V(I) > I”” ... 
will reach 0 eventually, we must simply conclude that this happens within m steps. 
For this, observe that once equality V Ii) = V(j+ ‘) happens, then the sequence is 
stable (by induction) thereafter. But the sequence of dimensions m = dim V(O), 
dim V(l), dim V’*’ ) . . . can strictly decrease at most m times. 1 

We remark that the above proof may be extended to produce a central com- 
position series by inserting, if necessary, arbitrary intermediate spaces so that 
dimensions go down by 1 in each step. 

6. POINTWISE SET STABILIZERS FOR NILPOTENT GROUPS 

Consider the pointwise set stabilizer problem (POINTSET). Given a per- 
mutation group G and a subset of the points on which G acts, POINTSET consists 
of computing the largest subgroup of G fixing each point in the subset. (By 
contrast, the set stabilizer problem SET permits mapping points in the subset to 
other points in the subset.) Theorem 5.3 is instrumental in the proof of 

THEOREM 6.1. POINTSET for nilpotent groups belongs to NC. 



PARALLEL ALGORITHMS 53 

ProoJ Initially we mark nodes, in the structure forest F for G, which subtend 
leaves to be fixed. From generators for the group Gk fixing the marked nodes at 
level k (available inductively), we compute generators for Gk + , , again by looking 
at the induced action on the level k, k + 1 trees extracted from F (but this time only 
those with marked roots, noting that Gk fixes these roots and that an unmarked 
root cannot have marked descendants). Iterating this process eventually yields 
generators for the group fixing exactly the marked leaves. 

To describe how to compute generators for Gk+ , from generators for Gk, 
consider the G,-action on the aforementioned trees. Observe that the induced 
action of Gk on the children (if any) of a marked (thus fixed) level k node is trivial 
or cyclic of prime order. Hence, the subgroup fixing a marked child of this node in 
fact fixes all the children. Thus, G,, , is the kernel of the induced action on the set 
of children of marked level k nodes and is obtainable by Theorem 5.4. 1 

Remark 6.2. The algorithm in the above proof exploits the fact that a 
pointwise-set-stabilizer H in the nilpotent permutation group G lies in a series that 
is subnormal (i.e., each group is normal in the next) 

H=G,< ..-G,<G. 

(Of course, it is also fortunate that, for pointwise-set-stabilizers, m = O(log n)). In 
fact, the class of nilpotent groups is characterizable by the property that all sub- 
groups lie in a subnormal series. Since any subgroup H of a group G turns up as 
the pointwise-set-stabilizer in some representation (e.g., of G acting on the set of 
right cosets of H), we see that the algorithm is necessarily invalid for non-nilpotent 
groups. Thus, while we extend the results of section 5, including kernels, to solvable 
groups, POINTSET for that class has to await more powerful methods (see 
[Lu86]). 

Pointwise set stabilizers play an early and important role in the development of 
fast sequential algorithms [FuHoLu80a]. Though they arrive here at a much later 
stage, they are still of great value. For example, they can serve to solve special cases 
of the setwise stabilizer problem SET. 

THEOREM 6.3. Consider a class of nilpotent permutation groups for which the size 
of each transitive constituent of a group is polynomially bounded in the degree of the 
group. Then SET for this class belongs to NC. 

Proof Let G be a group from the class and let r be the set to be stabilized. For 
each G-orbit A in parallel, we can compute (by enumeration of the small con- 
stituent in NC) the subgroup H of GA which setwise stabilizes Tn A and we can 
describe the (right) action of GA on the cosets of H. Computing G, then is an 
instance of POINTSET for nilpotent groups if we extend the action of G to the 
union of all such cosets (one group H per G-orbit A) and if we take the trivial 
cosets as the points to be fixed. We conclude by Theorem 6.1. 1 
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The class of Abelian permutation groups satisfies the hypothesis of Theorem 6.3 
because the order of a transitive Abelian group equals its degree [Wi64, p. 93. 
Hence Theorem 6.3 implies a result of [McCo87] that SET for Abelian groups is in 
NC. 

We turn to an application of our POINTSET algorithm to computing 
automorphism groups of graphs. Define N to be the class of vertex-colored graphs 
Xfor which Aut(X)C is contained in a small (i.e., order polynomial in the size of the 
graph) nilpotent group that is computable in NC, for each color class C. 

EXAMPLES. The automorphism group within each color class is nilpotent if, for 
example, 

- it is a directed cycle (cyclic group) 
- it is a connected trivalent graph with a distinguished edge (2-group) 
- it is a p-ary tree with a cyclic orientation imposed on the children of each 

node (p-group). 

Let m be the size of the color class. In the first example the group is transparent 
and of order m. In the second, it is computable in sequential time O(m)) and has 
size 2’ for some r <m/2 [GHLSW87], so we could allow m to be as large as 
O(log n). In the third, the conditions are satisfied with m = O(log, n). Note that for 
a graph to be in N it is not essential that every color class be restricted; the 
containing group might be influenced by interconnections with other classes. 

THEOREM 6.4. If a graph is in N then generators for its automorphism group can 
be computed in NC. 

Proof: Let V be the set of vertices of a graph X in N, and write G for the direct 
product over each color class C of the small NC-computable nilpotent group con- 
taining Aut(X)‘? Considering the action of nilpotent G on Vx V, observe that the 
restriction of G to a pair of color classes is small (being a small group or the direct 
product of two small groups). Hence G on Vx V has small transitive constituents, 
and Aut(X) is obtainable in NC as the set stabilizer of the subset of Vx V 
corresponding to edges in X, using Theorem 6.3. 1 

Instances of computability of automorphism groups typically facilitate 
isomorphism testing [Lu82]; for example, if one can compute the automorphism 
group of the disjoint union of two connected graphs then isomorphism is tested by 
seeing whether an automorphism switches the connected components (note, in 
the above examples, that the disjoint union of connected trivalent graphs with 
distinguished edges has a 2-group for automorphism group). Hence an NC 
isomorphism test follows directly from Theorem 6.4 if the union of the graphs 
belong to N. Unfortunately the disjoint union, for example, of two directed cycles 
does not have a nilpotent automorphism group (except if the cycles have size 2’). 
One can handle the (solvable) group that arises using deeper techniques developed 
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in [Lu86]. However, it is worth noting that there is a direct extension of our 
automorphism group technique to isomorphism-testing that allows us to stay 
within the class of nilpotent groups. 

First we adapt our techniques to solve generalizations of the POINTSET and 
SET problems, We generalize POINTSET to the POINTSET TRANSPORTER 
problem: given a group G acting on D and two ordered subsets A = {a,, . . . . a,,,} and 
B= {b,, . . . . b,} of 52, compute {g E G 1 Ag = B as ordered sets}. 

THEOREM 6.5. POINTSET TRANSPORTER for nilpotent groups belongs to 
NC. 

Proof: Clearly the desired subset of G, if not empty, is the coset Hg for any 
g E G mapping A to B pointwise and for H the pointwise stabilizer of A. To obtain 
such a g (or to prove that none exist), we make use of the subnormal series from G 
to H formed by the groups G, obtained, together with a structure forest for G, as a 
by-product of the NC-computation of H (see proof of Theorem 6.1). As in mem- 
bership testing (see proof of Corollary 5.2) we “sift” through this series, except that 
here we begin with the map t: A + B which sends a, to bi for each i (observe that t 
is only a partial map from 52 to Q). More precisely, we first verify in NC that the 
t-induced relation between the set of ancestors of elements of A and the set of 
ancestors of elements of B in the structure forest is a bijection which preserves 
G-orbits (in the negative case @ is immediately returned as answer). Then we 
carry out the “sifting” as if t were a permutation, noting that only the immediate 
descendants of the level k ancestors of A (i.e., of the “marked” nodes at level k in 
Theorem 6.1) play a role at stage k in setting up the system of equations ruling the 
existence of h E Gk with an action identical to that of tgkl on the level k + 1 
ancestors of A (where gk E G with an action identical to that of t on the level k 
ancestors of A is available inductively). 1 

In a similar spirit we generalize SET to the SET TRANSPORTER problem, 
defined like the POINTSET TRANSPORTER problem but with A and B viewed 
as (usual, unordered) sets. 

THEOREM 6.6. In a class of nilpotent permutation groups for which the size of 
each transitive constituent of a group is polynomially bounded in the degree of the 
group, SET TRANSPORTER can be solved in NC. 

Proof: If not empty the answer is again a coset, this time (G,)g, for any gE G 
mapping A to B (setwise). A straightforward extension of the proof of Theorem 6.3 
produces in this case an instance of POINTSET TRANSPORTER (here we need 
to compute for each G-orbit A, in addition to the cosets of Gj n A in Cd, an element 
h E GA mapping A n A to A n B; these elements h prescribe the target cosets to be 
used in the POINTSET TRANSPORTER instance, and if no such h exists for some 
G-orbit then @ is returned as answer). We conclude by Theorem 6.5. 1 
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We remark that special cases of Theorems 6.5 and 6.6 concern Abelian groups, 
for which NC algorithms for POINTSET TRANSPORTER and SET TRANS- 
PORTER do not seem to follow from [McCo87]. We also point out that the proof 
of Theorem 6.6 extends to solve (within the same class of groups) the MULTIPLE 
SET TRANSPORTER problem, in which it is required to transport, 
simultaneously, more than one set to a corresponding target. Finally, note that the 
proofs of Theorem 6.3 and 6.6 in effect describe NC* reductions from SET to 
POINTSET and from MULTIPLE SET TRANSPORTER to POINTSET 
TRANSPORTER in the class of nilpotent groups with polynomial-size transitive 
constituents. We observe that the same reductions carry over to any class of groups 
similarly restricted to having small transitive constituents. 

We return now to our goal of testing isomorphism between two graphs in the 
class N. Suppose that X and Y are graphs in N for which we know a single 
isomorphism in each color class of X to the corresponding color class of Y. Then 

THEOREM 6.7. X and Y can be tested for isomorphism in NC. 

Proof We imitate the algorithm for Aut(X) in Theorem 6.4 to compute 
Iso(X, Y), the set of all isomorphisms from X to Y, directly (an analogous 
approach is exploited in [GHLSW87]). Forming G as in the proof of Theorem 6.4, 
and gluing together the known isomorphisms between corresponding pairs of color 
classes, we form a set Gf that contains Iso(X, Y). As before, G acting on all pairs of 
vertices of X has small transitive constituents. Furthermore, Iso(X, Y) is the set of 
those gf in Gf which map edges of X to edges of Y, or equivalently Iso(X, Y) = Hf 
for H the subset of G comprised of those elements which map the set of edges of X 
to the image under f -’ of the set of edges of Y. In other words computing 
Iso(X, Y) reduces to an instance of SET TRANSPORTER involving G, and we 
conclude by Theorem 6.6. 1 

7. SOLVABLE GROUPS 

First we aim at showing how to test solvability in NC, and we begin by proving a 
more general result. 

Define a property as “hereditary” if whenever the property holds for a group G it 
holds for any subgroup and any quotient group of G, and whenever the property 
holds for both a normal subgroup N of G and for G/N it holds for G. Thus a 
hereditary property holds precisely for the class of groups with composition factors 
within some fixed collection of simple groups. Examples of hereditary properties 
include solvability, being a p-group, having bounded non-Abelian composition 
factors. 

THEOREM 7.1. Testing a permutation group for a hereditary property P 
NC2-reduces to testing P for a primitive group. 
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Proof. Generalizing a technique used in [Mc84] to test nilpotency in NC, we 
compute a structure forest for the input group G (Proposition 3.1). Write S for the 
set of nodes at level 1, that is, for the set of immediate descendants of the roots. 
Then P holds for G if and only if P holds for the G-action on S as well as for each 
stabilizer within G of a node in S restricted to the leaves subtended. To see this note 
that the direct product of the (restricted) stabilizers of each node in S contains the 
kernel of the G-action on S. Now testing the G-action on S for P can be done for 
each (primitive) transitive constituent in parallel (seeing that the direct product of 
these constituents includes the G-action). As for the stabilizers, we compute 
the Schreier generators for each of them in parallel (see proof of Theorem 5.1). 
Applying this argument recursively to each stabilizer in parallel (observing that we 
can always use G in the computation of Schreier generators), eventually we reach 
the bottom of the structure forest with a generating set bounded in size by the 
number of generators of G times the number of leaves in the forest. 1 

COROLLARY 7.2. Testing a permutation group for solvability belongs to NC. 

Proof Solvability is a hereditary property and the Palfy-Wolf bound reduces 
testing solvability of a primitive solvable group to testing solvability of a group 
having order polynomial in its degree (hence in NC for one can generate the entire 
grow). I 

Since it is known that a bound on the non-Abelian composition factors imposes a 
polynomial-bound on the size of a primitive permutation group [BaCaPa82], 
testing for bounded non-Abelian composition factors is also in NC. We observe 
that this class of groups arises in testing isomorphism of graphs of bounded valence 
[Lu82]. 

Remark 7.3. The basic divide-and-conquer technique used in the proof of 
Theorem 7.1 has other applications. Suppose we consider the question of whether a 
prime p divides the order of G. This time we observe that property holds for G if 
and only if it holds for at least one transitive constituent, and it holds for a 
transitive group if and only if it holds either for the (primitive) group acting on a 
set of maximal blocks or for the subgroup fixing one block, in its action within that 
block. Consider, for example, groups with bounded non-Abelian composition 
factors. It is known [BaCaPa82] that primitive groups in this class have 
polynomially bounded order. Thus testing whether p divides the order is in NC. (It 
is now known that the exact order of groups is obtainable in NC. This was shown 
for groups with bounded non-Abelian composition factors in [Lu86] and extended 
to general groups in [BaLuSe87].) 1 

We now undertake the task of generalizing some of the results of Section 5 io the 
case of solvable groups. Not surprisingly, the first step in that direction is the com- 
putation of PCBs. Recall that the central ingredient to our PCB algorithm for 
nilpotent G (Theorem 5.1) was a normal series for G, of length O(log n), with 
Abelian factors. In the case of solvable G, the factors in the corresponding 
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logarithmic length series are not necessarily Abelian. However properties of 
solvable groups allow us to refine this series into a normal series with Abelian 
factors, this time of length O((log H)~), on which to cast our solvable PCB 
algorithm. We give details in proving 

THEOREM 1.4. A PCB for a solvable permutation group can be computed in NC. 

Proof Recall the proof of Theorem 5.1. The overall strategy here is identical to 
that described in the first paragraph of that proof. Using the same notation, let it be 
required to extend a PCB for G rel Ker #k, through which it is possible to sift in 
NC (inductively as before), to a PCB for G rel Ker dk+ r. To complete the present 
proof it suffices to show how to perform this extension in NC. 

Here the step from Ker #k to Ker dk+ I is still too large (Ker d,/Ker dk+ I is not 
necessarily Abelian, let alone a vector space), so we need to refine this step of the 
normal series, inserting O(log n) groups whose successive factor groups can be 
viewed as vector spaces. We will proceed in effect by computing, using the known 
PCB for G rel Ker dk, a PCB for the action of G on the forest obtained by pruning 
all trees to level k + 1; clearly this will yield a PCB for G rel Ker bk + , . Throughout 
the rest of this proof we therefore view G and Ker #k as acting on the pruned trees, 
though in actual computations we also keep track of the faithful action of G on the 
original domain. We write K for Ker dk. 

To describe the first stage, we compute, as in the nilpotent case, the stabilizers of 
the level k nodes and we denote by L their direct product (each factor acting only 
on the relevant level k + 1 children), which is normalized by G as before. Then we 
form, as described next, a direct product L/M of elementary Abelian groups. At 
each level k node where L is non-trivial (non-trivial required for sufftcient progress 
to be made at each stage) the group T induced by L on the children of that node 
contains a subgroup U = ( TP, [T, T] ) (for p an appropriately chosen prime and 
for TP the set of pth powers of elements of T), such that T/U is a direct product of 
cyclic groups of order p, i.e., a vector space over 2,. The group T is small by the 
Palfy-Wolf bound and one can pick p in NC so that U# T. Note, for the purpose 
of computing M, that we wish to preserve the conjugation action of G on A4. Hence 
it is important that the same “nontrivial” p be chosen when constructing the com- 
ponents of M corresponding to each level k node in a G-orbit (that is, to each level 
k node appearing in the same tree of the structure forest). This can be accomplished 
in NC using that all components of L corresponding to a given G-orbit are con- 
jugate. Hence in practice only one component of A4 per G-orbit is obtained by 
brute force; the rest are obtained by “replication” via conjugation by appropriate 
(easily computed) elements of G. The upshot of this are groups L and M, each nor- 
malized by G, with L/M a direct product of known cyclic groups of prime order. 

But then we are in the scenario described prior to Lemma 4.3, recalling that from 
the PCB for G rel K (available inductively) we can compute S such that 
K = NCL,(S). Hence a PCB for K rel(G n M) is computable in NC which, having 
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retained the full action on the leaves, we append to the PCB for G rel K, appealing 
to Proposition 3.2. This completes the first stage. 

The next stage begins by replacing K by (G n M) and L by M. Since M is still 
normalized by G, we can iterate the above computations to obtain the next “chunk” 
in the PCB for G rel Ker dk + , . We keep repeating these stages, pasting together the 
PCB chunks produced, until M becomes trivial (this occurs within O(log n) stages 
since at each stage the order of each component of L acting nontrivially on the level 
k + 1 nodes is at least halved). When that happens we have the desired PCB for G 
rel Kerd,+,. 1 

As in the nilpotent case, it follows that 

COROLLARY 1.5. In a solvable group, order computation and membership testing 
can be done in NC. 1 

Substituting the O(log* n) subgroup tower in the proof of Theorem 7.4, the proof 
of Theorem 5.3 extends directly to yield 

THEOREM 7.6. Computing the normal closure NCL,(H) of a subgroup H of a 
solvable permutation group G belongs to NC. 1 

Recall problem KERNEL which consists of computing the kernel of a G-action. 
As in the nilpotent case (Theorem 5.4), we obtain 

COROLLARY 7.7. For solvable groups KERNEL is in NC. 1 

Applying Theorem 5.5, Corollaries 5.6 and 5.7 therefore also have analogs in the 
solvable case. In particular, 

COROLLARY 7.8. The center of a solvable permutation group can be computed 
in NC. 1 

Normal closures in fact enable us to get at more of the structural underpinnings 
of the group. 

COROLLARY 1.9. Computing the derived series and a composition series of a 
solvable permutation group belongs to NC. 

Proof The length of the derived series is 0 (log* n) (this is an easy consequence 
of the Palfy-Wolfe bound on primitive solvable groups). Then successive com- 
mutator subgroups are obtained from Theorem 7.6 using the fact that [G, G] = 
NCL,{ [g, h] I g, h E S} whenever S is a generating set for G. Now a composition 
series for G is formed by the subgroups ( {bj}j,i) for 1 <i 6 m in the PCB 
computed in the proof of Theorem 7.4, since the pis are prime integers. 1 

Note, though the derived series has poly-log length, a composition series need 
not. 
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8. COMMENTS AND QUESTIONS 

As mentioned earlier, the results of this paper have now been extended to general 
permutation groups [Lu86; BaLuSe871. In particular, order computation, mem- 
bership-testing, and POINTSET, determination of composition factors, are shown 
to be in NC. However, there remain fundamental questions that are open even for 
nilpotent or solvable groups. We mention two favorites. 

Of particular interest is the parallel complexity of set stabilizer (SET). At this 
time, we hesitate to recommend SET for general groups, since that problem is not 
even known to be in P, indeed, if it were then graph isomorphism would be in P 
[Lu82]. On the other hand SET is known to be in P for solvable groups [Lu82]. 
Nevertheless, only the case of Abelian groups is known to be in NC (see 
[Mc84; McCo87] or Section 6 of the present paper). It would be significant to 
extend this at least to nilpotent groups. By way of motivation, we mention that 
trivalent graph isomorphism NC reduces to SET for 2-groups [Lu86]. As with 
pointwise set-stabilizers (Section 6) set stabilizers in nilpotent groups can be 
located in a sequence of subgroups, each a kernel of a constructible action of its 
predecessor. However, unlike the construction for POINTSET, these subnormal 
series need not have poly-log length. 

An interesting open question for solvable groups is the parallel complexity of the 
problem of finding Sylow p-subgroups. Kantor [Ka85a; Ka85b] has shown that 
Sylow p-subgroups of general permutation groups can be found in polynomial time 
(this was actually first done for the solvable case [KaTa]). In [Mc84] it was 
shown that, for nilpotent groups, Sylow p-subgroups are attainable in NC. Can this 
be done for solvable, or even more general, groups? Can one even find an element 
of order p in a general group, having observed that p divides ICI? 

Note added in proof The first author has shown that the problem of-finding Sylow subgroups is in 
NC for solvable groups. However, it still appears open for general permutation groups. 
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