12,058 research outputs found

    Upper Bound Analysis and Routing in Optical Benes Networks

    Get PDF
    Multistage Interconnection Networks (MIN) are popular in switching and communication applications. It has been used in telecommunication and parallel computing systems for many years. The new challenge facing optical MIN is crosstalk, which is caused by coupling two signals within a switching element. Crosstalk is not too big an issue in the Electrical Domain, but due to the stringent Bit Error Rate (BER) constraint, it is a big major concern in the Optical Domain. In this research dissertation, we will study the blocking probability in the optical network and we will study the deterministic conditions for strictly non-blocking Vertical Stacked Optical Benes Networks (VSOBN) with and without worst-case scenarios. We will establish the upper bound on blocking probability of Vertical Stacked Optical Benes Networks with respect to the number of planes used when the non-blocking requirement is not met. We will then study routing in WDM Benes networks and propose a new routing algorithm so that the number of wavelengths can be reduced. Since routing in WDM optical network is an NP-hard problem, many heuristic algorithms are designed by many researchers to perform this routing. We will also develop a genetic algorithm, simulated annealing algorithm and ant colony technique and apply these AI algorithms to route the connections in WDM Benes network

    A general analytical model of adaptive wormhole routing in k-ary n-cubes

    Get PDF
    Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms

    Crosstalk-free Conjugate Networks for Optical Multicast Switching

    Full text link
    High-speed photonic switching networks can switch optical signals at the rate of several terabits per second. However, they suffer from an intrinsic crosstalk problem when two optical signals cross at the same switch element. To avoid crosstalk, active connections must be node-disjoint in the switching network. In this paper, we propose a sequence of decomposition and merge operations, called conjugate transformation, performed on each switch element to tackle this problem. The network resulting from this transformation is called conjugate network. By using the numbering-schemes of networks, we prove that if the route assignments in the original network are link-disjoint, their corresponding ones in the conjugate network would be node-disjoint. Thus, traditional nonblocking switching networks can be transformed into crosstalk-free optical switches in a routine manner. Furthermore, we show that crosstalk-free multicast switches can also be obtained from existing nonblocking multicast switches via the same conjugate transformation.Comment: 10 page

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Virtual lines, a deadlock free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable to fulfil these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel fifos, each representing a virtual line. In this way we not only have solved the problem of Head Of Line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual lines concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology

    Virtual lines, a deadlock-free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper, we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic, it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable of fulfilling these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock-free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel FIFO's, each representing a virtual line. In this way, we not only have solved the problem of head of line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks, it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual line concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology
    • 

    corecore