15,422 research outputs found

    Replacement Paths via Row Minima of Concise Matrices

    Full text link
    Matrix MM is {\em kk-concise} if the finite entries of each column of MM consist of kk or less intervals of identical numbers. We give an O(n+m)O(n+m)-time algorithm to compute the row minima of any O(1)O(1)-concise n×mn\times m matrix. Our algorithm yields the first O(n+m)O(n+m)-time reductions from the replacement-paths problem on an nn-node mm-edge undirected graph (respectively, directed acyclic graph) to the single-source shortest-paths problem on an O(n)O(n)-node O(m)O(m)-edge undirected graph (respectively, directed acyclic graph). That is, we prove that the replacement-paths problem is no harder than the single-source shortest-paths problem on undirected graphs and directed acyclic graphs. Moreover, our linear-time reductions lead to the first O(n+m)O(n+m)-time algorithms for the replacement-paths problem on the following classes of nn-node mm-edge graphs (1) undirected graphs in the word-RAM model of computation, (2) undirected planar graphs, (3) undirected minor-closed graphs, and (4) directed acyclic graphs.Comment: 23 pages, 1 table, 9 figures, accepted to SIAM Journal on Discrete Mathematic

    An O(1)-Approximation for Minimum Spanning Tree Interdiction

    Full text link
    Network interdiction problems are a natural way to study the sensitivity of a network optimization problem with respect to the removal of a limited set of edges or vertices. One of the oldest and best-studied interdiction problems is minimum spanning tree (MST) interdiction. Here, an undirected multigraph with nonnegative edge weights and positive interdiction costs on its edges is given, together with a positive budget B. The goal is to find a subset of edges R, whose total interdiction cost does not exceed B, such that removing R leads to a graph where the weight of an MST is as large as possible. Frederickson and Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction, where m is the number of edges. Since then, no further progress has been made regarding approximations, and the question whether MST interdiction admits an O(1)-approximation remained open. We answer this question in the affirmative, by presenting a 14-approximation that overcomes two main hurdles that hindered further progress so far. Moreover, based on a well-known 2-approximation for the metric traveling salesman problem (TSP), we show that our O(1)-approximation for MST interdiction implies an O(1)-approximation for a natural interdiction version of metric TSP

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n12/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Designing Efficient Parallel Algorithms for Graph Problems

    Get PDF
    Graph algorithms are concerned with the algorithmic aspects of solving graph problems. The problems are motivated from and have application to diverse areas of computer science, engineering and other disciplines. Problems arising from these areas of application are good candidates for parallelization since they often have both intense computational needs and stringent response time requirements. Motivated by these concerns, this thesis investigates parallel algorithms for these kinds of graph problems that have at least one of the following properties: the problems involve some type of dynamic updates; the sparsification technique is applicable; or the problems are closely related to communications network issues. The models of parallel computation used in our studies are the Parallel Random Access Machine (PRAM) model and the practical interconnection network models such as meshes and hypercubes. ¶ ..

    Parameterized Complexity of Edge Interdiction Problems

    Full text link
    We study the parameterized complexity of interdiction problems in graphs. For an optimization problem on graphs, one can formulate an interdiction problem as a game consisting of two players, namely, an interdictor and an evader, who compete on an objective with opposing interests. In edge interdiction problems, every edge of the input graph has an interdiction cost associated with it and the interdictor interdicts the graph by modifying the edges in the graph, and the number of such modifications is constrained by the interdictor's budget. The evader then solves the given optimization problem on the modified graph. The action of the interdictor must impede the evader as much as possible. We focus on edge interdiction problems related to minimum spanning tree, maximum matching and shortest paths. These problems arise in different real world scenarios. We derive several fixed-parameter tractability and W[1]-hardness results for these interdiction problems with respect to various parameters. Next, we show close relation between interdiction problems and partial cover problems on bipartite graphs where the goal is not to cover all elements but to minimize/maximize the number of covered elements with specific number of sets. Hereby, we investigate the parameterized complexity of several partial cover problems on bipartite graphs
    corecore