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Abstract

Graph algorithms are concerned with the algorithmic aspects of solving graph prob-

lems. The problems are motivated from and have application to diverse areas of com-

puter science, engineering and other disciplines. Problems arising from these areas of

application are good candidates for parallelization since they often have both intense

computational needs and stringent response time requirements. Motivated by these

concerns, this thesis investigates parallel algorithms for these kinds of graph problems

that have at least one of the following properties: the problems involve some type of

dynamic updates; the sparsi�cation technique is applicable; or the problems are closely

related to communications network issues. The models of parallel computation used in

our studies are the Parallel Random Access Machine (PRAM) model and the practical

interconnection network models such as meshes and hypercubes.

Consider a communications network which can be represented by a graph G =

(V;E), where V is a set of sites (processors), and E is a set of links which are used to

connect the sites (processors). In some cases, we also assign weights and/or directions

to the edges in E. Associated with this network, there are many problems such as (i)

whether the network is k-edge (k-vertex) connected with �xed k; (ii) whether there

are k-edge (k-vertex) disjoint paths between u and v for a pair of given vertices u and

v after the network is dynamically updated by adding and/or deleting an edge etc;

(iii) whether the sites in the network can communicate with each other when some

sites and links fail; (iv) identifying the �rst k edges in the network whose deletion will

result in the maximum increase in the routing cost in the resulting network for �xed k;

(v) how to augment the network at optimal cost with a given feasible set of weighted

edges such that the augmented network is k-edge (k-vertex) connected; (vi) how to

route messages through the network eÆciently. In this thesis we answer the problems

mentioned above by presenting eÆcient parallel algorithms to solve them. As far as we

know, most of the proposed algorithms are the �rst ones in the parallel setting.

Even though most of the problems concerned in this thesis are related to commu-

nications networks, we also study the classic edge-coloring problem. The outstanding

diÆculty to solve this problem in parallel is that we do not yet know whether or not it

is in NC. In this thesis we present an improved parallel algorithm for the problem which

needs O(�4:5 log3�log n + �4 log4 n) time using O(n2� + n�3) processors, where n

is the number of vertices and � is the maximum vertex degree. Compared with a

previously known result on the same model, we improved by an O(�1:5) factor in time.

The non-trivial part is to reduce this problem to the edge-coloring update problem.

We also generalize this problem to the approximate edge-coloring problem by giving a

faster parallel algorithm for the latter case.

Throughout the design and analysis of parallel graph algorithms, we also �nd a
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technique called the sparsi�cation technique is very powerful in the design of eÆcient

sequential and parallel algorithms on dense undirected graphs. We believe that this

technique may be useful in its own right for guiding the design of eÆcient sequential

and parallel algorithms for problems in other areas as well as in graph theory.
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