1,615 research outputs found

    A Local Computation Approximation Scheme to Maximum Matching

    Full text link
    We present a polylogarithmic local computation matching algorithm which guarantees a (1-\eps)-approximation to the maximum matching in graphs of bounded degree.Comment: Appears in Approx 201

    Distributed Maximum Matching in Bounded Degree Graphs

    Full text link
    We present deterministic distributed algorithms for computing approximate maximum cardinality matchings and approximate maximum weight matchings. Our algorithm for the unweighted case computes a matching whose size is at least (1-\eps) times the optimal in \Delta^{O(1/\eps)} + O\left(\frac{1}{\eps^2}\right) \cdot\log^*(n) rounds where nn is the number of vertices in the graph and Δ\Delta is the maximum degree. Our algorithm for the edge-weighted case computes a matching whose weight is at least (1-\eps) times the optimal in \log(\min\{1/\wmin,n/\eps\})^{O(1/\eps)}\cdot(\Delta^{O(1/\eps)}+\log^*(n)) rounds for edge-weights in [\wmin,1]. The best previous algorithms for both the unweighted case and the weighted case are by Lotker, Patt-Shamir, and Pettie~(SPAA 2008). For the unweighted case they give a randomized (1-\eps)-approximation algorithm that runs in O((\log(n)) /\eps^3) rounds. For the weighted case they give a randomized (1/2-\eps)-approximation algorithm that runs in O(\log(\eps^{-1}) \cdot \log(n)) rounds. Hence, our results improve on the previous ones when the parameters Δ\Delta, \eps and \wmin are constants (where we reduce the number of runs from O(log(n))O(\log(n)) to O(log(n))O(\log^*(n))), and more generally when Δ\Delta, 1/\eps and 1/\wmin are sufficiently slowly increasing functions of nn. Moreover, our algorithms are deterministic rather than randomized.Comment: arXiv admin note: substantial text overlap with arXiv:1402.379

    Local algorithms in (weakly) coloured graphs

    Full text link
    A local algorithm is a distributed algorithm that completes after a constant number of synchronous communication rounds. We present local approximation algorithms for the minimum dominating set problem and the maximum matching problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured graph, both problems admit a local algorithm with the approximation factor (Δ+1)/2(\Delta+1)/2, where Δ\Delta is the maximum degree of the graph. We also give a matching lower bound proving that there is no local algorithm with a better approximation factor for either of these problems. Furthermore, we show that the stronger assumption of a 2-colouring does not help in the case of the dominating set problem, but there is a local approximation scheme for the maximum matching problem in 2-coloured graphs.Comment: 14 pages, 3 figure

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    Linear-Time Algorithms for Edge-Based Problems

    Get PDF
    There is a dearth of algorithms that deal with edge-based problems in trees, specifically algorithms for edge sets that satisfy a particular parameter. The goal of this thesis is to create a methodology for designing algorithms for these edge-based problems. We will present a variant of the Wimer method [Wimer et al. 1985] [Wimer 1987] that can handle edge properties. We call this variant the Wimer edge variant. The thesis is divided into three sections, the first being a chapter devoted to defining and discussing the Wimer edge variant in depth, showing how to develop an algorithm using this variant, and an example of this process, including a run of an algorithm developed using this method. The second section involves algorithms developed using the Wimer edge variant. We will provide algorithms for a variety of edge parameters, including four different matching parameters (connected, disconnected, induced and 2-matching), three different domination parameters (edge, total edge and edge-vertex) and two covering parameters (edge cover and edge cover irredundance). Each of these algorithms are discussed in detail and run in linear time. The third section involves an attempt to characterize the Wimer edge variant. We show how the variant can be applied to three classes of graphs: weighted trees, unicyclic graphs and generalized series-parallel graphs. For each of these classes, we detail what adaptations are required (if any) and design an algorithm, including showing a run on an example graph. The fourth chapter is devoted to a discussion of what qualities a parameter has to have in order to be likely to have a solution using the Wimer edge variant. Also in this chapter we discuss classes of graphs that can utilize the Wimer edge variant. Other topics discussed in this thesis include a literature review, and a discussion of future work. There are plenty of options for future work on this topic, which hopefully this thesis can inspire. The intent of this thesis is to provide the foundation for future algorithms and other work in this area
    corecore