37,336 research outputs found

    Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches

    Full text link
    This paper introduces simple analytical formulas for the grid impedance of electrically dense arrays of square patches and for the surface impedance of high-impedance surfaces based on the dense arrays of metal strips or square patches over ground planes. Emphasis is on the oblique-incidence excitation. The approach is based on the known analytical models for strip grids combined with the approximate Babinet principle for planar grids located at a dielectric interface. Analytical expressions for the surface impedance and reflection coefficient resulting from our analysis are thoroughly verified by full-wave simulations and compared with available data in open literature for particular cases. The results can be used in the design of various antennas and microwave or millimeter wave devices which use artificial impedance surfaces and artificial magnetic conductors (reflect-array antennas, tunable phase shifters, etc.), as well as for the derivation of accurate higher-order impedance boundary conditions for artificial (high-) impedance surfaces. As an example, the propagation properties of surface waves along the high-impedance surfaces are studied.Comment: 12 pages, 10 figures, submitted to IEEE Transactions on Antennas and Propagatio

    GA Optimisation of Crossed Dipole FSS Array Geometry

    Get PDF
    Crossed dipoles are used as dual polarised elements in frequency selective surface arrays but the transmission response is angle of incidence dependent. A genetic algorithm has been used to minimise the drift of the reflection band, stabilising it for a wide range of angles, to beyond 60°, even on thin substrates

    Wide-angle perfect absorber/thermal emitter in the THz regime

    Full text link
    We show that a perfect absorber/thermal emitter exhibiting an absorption peak of 99.9% can be achieved in metallic nanostructures that can be easily fabricated. The very high absorption is maintained for large angles with a minimal shift in the center frequency and can be tuned throughout the visible and near-infrared regime by scaling the nanostructure dimensions. The stability of the spectral features at high temperatures is tested by simulations using a range of material parameters.Comment: Submitted to Phys. Rev. Let
    corecore