186 research outputs found

    Palmprint identification using restricted fusion

    Get PDF
    2008-2009 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    The fundamentals of unimodal palmprint authentication based on a biometric system: A review

    Get PDF
    Biometric system can be defined as the automated method of identifying or authenticating the identity of a living person based on physiological or behavioral traits. Palmprint biometric-based authentication has gained considerable attention in recent years. Globally, enterprises have been exploring biometric authorization for some time, for the purpose of security, payment processing, law enforcement CCTV systems, and even access to offices, buildings, and gyms via the entry doors. Palmprint biometric system can be divided into unimodal and multimodal. This paper will investigate the biometric system and provide a detailed overview of the palmprint technology with existing recognition approaches. Finally, we introduce a review of previous works based on a unimodal palmprint system using different databases

    Palmprint Recognition in Uncontrolled and Uncooperative Environment

    Full text link
    Online palmprint recognition and latent palmprint identification are two branches of palmprint studies. The former uses middle-resolution images collected by a digital camera in a well-controlled or contact-based environment with user cooperation for commercial applications and the latter uses high-resolution latent palmprints collected in crime scenes for forensic investigation. However, these two branches do not cover some palmprint images which have the potential for forensic investigation. Due to the prevalence of smartphone and consumer camera, more evidence is in the form of digital images taken in uncontrolled and uncooperative environment, e.g., child pornographic images and terrorist images, where the criminals commonly hide or cover their face. However, their palms can be observable. To study palmprint identification on images collected in uncontrolled and uncooperative environment, a new palmprint database is established and an end-to-end deep learning algorithm is proposed. The new database named NTU Palmprints from the Internet (NTU-PI-v1) contains 7881 images from 2035 palms collected from the Internet. The proposed algorithm consists of an alignment network and a feature extraction network and is end-to-end trainable. The proposed algorithm is compared with the state-of-the-art online palmprint recognition methods and evaluated on three public contactless palmprint databases, IITD, CASIA, and PolyU and two new databases, NTU-PI-v1 and NTU contactless palmprint database. The experimental results showed that the proposed algorithm outperforms the existing palmprint recognition methods.Comment: Accepted in the IEEE Transactions on Information Forensics and Securit

    Multimodal Biometrics Enhancement Recognition System based on Fusion of Fingerprint and PalmPrint: A Review

    Get PDF
    This article is an overview of a current multimodal biometrics research based on fingerprint and palm-print. It explains the pervious study for each modal separately and its fusion technique with another biometric modal. The basic biometric system consists of four stages: firstly, the sensor which is used for enrolmen

    Palmprint Gender Classification Using Deep Learning Methods

    Get PDF
    Gender identification is an important technique that can improve the performance of authentication systems by reducing searching space and speeding up the matching process. Several biometric traits have been used to ascertain human gender. Among them, the human palmprint possesses several discriminating features such as principal-lines, wrinkles, ridges, and minutiae features and that offer cues for gender identification. The goal of this work is to develop novel deep-learning techniques to determine gender from palmprint images. PolyU and CASIA palmprint databases with 90,000 and 5502 images respectively were used for training and testing purposes in this research. After ROI extraction and data augmentation were performed, various convolutional and deep learning-based classification approaches were empirically designed, optimized, and tested. Results of gender classification as high as 94.87% were achieved on the PolyU palmprint database and 90.70% accuracy on the CASIA palmprint database. Optimal performance was achieved by combining two different pre-trained and fine-tuned deep CNNs (VGGNet and DenseNet) through score level average fusion. In addition, Gradient-weighted Class Activation Mapping (Grad-CAM) was also implemented to ascertain which specific regions of the palmprint are most discriminative for gender classification
    corecore