2,294 research outputs found

    Circulant temporal encoding for video retrieval and temporal alignment

    Get PDF
    We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene

    Image Processing Applications in Real Life: 2D Fragmented Image and Document Reassembly and Frequency Division Multiplexed Imaging

    Get PDF
    In this era of modern technology, image processing is one the most studied disciplines of signal processing and its applications can be found in every aspect of our daily life. In this work three main applications for image processing has been studied. In chapter 1, frequency division multiplexed imaging (FDMI), a novel idea in the field of computational photography, has been introduced. Using FDMI, multiple images are captured simultaneously in a single shot and can later be extracted from the multiplexed image. This is achieved by spatially modulating the images so that they are placed at different locations in the Fourier domain. Finally, a Texas Instruments digital micromirror device (DMD) based implementation of FDMI is presented and results are shown. Chapter 2 discusses the problem of image reassembly which is to restore an image back to its original form from its pieces after it has been fragmented due to different destructive reasons. We propose an efficient algorithm for 2D image fragment reassembly problem based on solving a variation of Longest Common Subsequence (LCS) problem. Our processing pipeline has three steps. First, the boundary of each fragment is extracted automatically; second, a novel boundary matching is performed by solving LCS to identify the best possible adjacency relationship among image fragment pairs; finally, a multi-piece global alignment is used to filter out incorrect pairwise matches and compose the final image. We perform experiments on complicated image fragment datasets and compare our results with existing methods to show the improved efficiency and robustness of our method. The problem of reassembling a hand-torn or machine-shredded document back to its original form is another useful version of the image reassembly problem. Reassembling a shredded document is different from reassembling an ordinary image because the geometric shape of fragments do not carry a lot of valuable information if the document has been machine-shredded rather than hand-torn. On the other hand, matching words and context can be used as an additional tool to help improve the task of reassembly. In the final chapter, document reassembly problem has been addressed through solving a graph optimization problem

    Computer aided puzzle assembly based on shape and texture information /

    Get PDF
    Puzzle assembly’s importance lies into application in many areas such as restoration and reconstruction of archeological findings, the repairing of broken objects, solving of the jigsaw type puzzles, molecular docking problem, etc. Puzzle pieces usually include not only geometrical shape information but also visual information of texture, color, continuity of lines, and so on. Moreover, textural information is mainly used to assembly pieces in some cases, such as classic jigsaw puzzles. This research presents a new approach in that pictorial assembly, in contrast to previous curve matching methods, uses texture information as well as geometric shape. The assembly in this study is performed using textural features and geometrical constraints. First, the texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. The feature values are derived by these original and predicted images of pieces. A combination of the feature and confidence values is used to generate an affinity measure of corresponding pieces. Two new algorithms using Fourier based image registration techniques are developed to optimize the affinity. The algorithms for inpainting, affinity and Fourier based assembly are explained with experimental results on real and artificial data. The main contributions of this research are: The development of a performance measure that indicates the level of success of assembly of pieces based on textural features and geometrical shape. Solution of the assembly problem by using of the Fourier based methods

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    corecore