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Abstract
We design a computational method to align pairs of counter-fitting fracture surfaces of digitized archaeological artefacts.
The challenge is to achieve an accurate fit, even though the data is inherently lacking material through abrasion, missing
geometry of the counterparts, and may have been acquired by different scanning practices. We propose to use the non-linear
complementarity-preserving properties of Mathematical Morphology to guide the pairwise fitting in a manner inherently
insensitive to these aspects. In our approach, the fracture surface is tightly bounded by a concise set of characteristic multi-
local morphological features. Such features and their descriptors are computed by analysing the discrete distance transform
and its causal scale-space information. This compact morphological representation provides the information required for
accurately aligning the fracture surfaces through applying a RANSAC-based algorithm incorporating weighted Procrustes
to the morphological features, followed by ICP on morphologically selected ‘flank’ regions. We propose new criteria for
evaluating the resulting pairwise alignment quality, taking into consideration both penetration and gap regions. Careful
quantitative evaluation on real terracotta fragments confirms the accuracy of our method under the expected archaeological
noise. We show that our morphological method outperforms a recent linear pairwise alignment method and briefly discuss
our limitations and the effects of variations in digitization and abrasion on our proposed alignment technique.

Keywords Archaeological reconstruction · Fragment alignment · Scale space · Fracture representation · Boundary
morphology · Morphological features · Lipschitz · ICP

1 Introduction

1.1 Alignment in Virtual Archaeology

Virtual archaeology, the study of artefacts by means of their
digital representations, should enable an archaeologist to per-
form common workflow tasks remotely. This may involve
the virtual fitting or reassembly of broken objects, dispersed
over different collections, or simply too heavy to be manip-
ulated physically. Even a single accurate alignment may
considerably affect the cultural interpretation of artefacts
(Sommella Mura, 2011), so accuracy is required. Typically,
archaeological artefacts are not only broken, but their frac-
turesmay be incomplete (e.g., if the artefactwas broken again
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and the other piece is missing), abraded, or even deformed.
Moreover, their digital mesh representation may contain dig-
itization noise and point cloud registration errors from the
3D scanning process. These demands, paired with a sensible
time behaviour, make pairwise alignment a daunting com-
putational task (as other studies such as (Toler-Franklin et
al., 2010; McBride and Kimia, 2003; Palmas et al., 2013)
confirm).

Our method is part of a larger system for reunification of
broken archaeological artefacts in the GRAVITATE project
(Phillips et al., 2016). Our role was to focus on pairwise
fitting of fracture surfaces belonging to fragments, nominated
by other selection modules in the system, by aligning the
fragments to an accuracy compatible with the digitization
noise expected within the scanning process (or report failure
to the selection module). For specific sets of fragments (such
as in FORMAURBISROMAE (Koller et al., 2006), or fresco
restoration (Vendrell-Vidal and Sánchez-Belenguer, 2014)),
information on the ‘skin’ patterns on the original outside of
the artefact would very likely be highly beneficial to improve
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the computation of a good alignment, in speed or accuracy.
A choice was made early on in GRAVITATE to separate
the purely geometrical from semantic or colorimetric pattern
information as was also done in PRESIOUS (Andreadis et
al., 2015).

Our geometrical method addresses pairwise alignment,
we specifically do not perform global reassembly or opti-
mized global alignment of multiple pieces, although we will
see in Sect. 8.3 that our results may form a good basis for
such an extension.

1.2 Pairwise Alignment in Literature

The main drive of our work is to address the computational
problem of pairwise alignment of archaeological artefacts
through investigating the geometric characterization of their
involved fracture surfaces. The actual fractures are typically
close to flat and fractal, and the variations that should lead to
alignment subtend a small range of orientations. This makes
the archaeological pairwise alignment problemdistinctly dif-
ferent fromglobal alignmentmethods such as (Mellado et al.,
2014).

The pairwise alignment of artefacts has been studied for
quite a while. The early work started with adapting 2D tech-
niques to 3D alignment (Kalvin et al., 1986;Kong andKimia,
2001; Papaioannou et al., 2002; Leitao and Stolfi, 2002;
Sagiroglu and Ercil, 2005; Koller et al., 2006; Huang et
al., 2013). This may involve the 3D fracture surfaces, but is
often partly based on the continuity of the carving or painting
depicted on the skin facets. Truly 3D fitting may use freshly
broken and complete artefacts (Huang et al., 2006; Brown et
al., 2008; Winkelbach andWahl, 2007; Son et al., 2017), and
combine the geometrical and combinatorial aspects, with the
aim to perform a total reassembly.

The high resolution at which archaeological artefacts are
scannedmakes their brute force alignment on the 3D rawdata
a computationally expensive process (as other studies such as
(Toler-Franklin et al., 2010; McBride and Kimia, 2003; Pal-
mas et al., 2013) confirm). Therefore, most recent methods
employ feature-based alignment techniques bymatching sig-
nificant corresponding features of counter-fitting fragments.
This reduces the pairwise alignment complexity while main-
taining the intended performance. These features are mostly
detected and extracted using differential geometric tech-
niques which are linearly sensitive to missing information.
Such features are not expected to be stable under abrasion
and many of them are not descriptive enough to allow the
effective hierarchical scale-based fitting.

In Table 1, we have collated some representative methods
that contain purely geometrical pairwise alignment, either as
their goal or as part of their total procedure.We focus on how
global reassemblymethods address the pairwise alignment as
part of their whole pipeline without going into the details of Ta
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their overall strategy ofmulti-fragment reassembly. This cov-
ers most related work dealingmerely with pairwisematching
and alignment of fractured archaeological surfaces. We have
indicated what objects were used, and how the problem was
solved in terms of the alignment method on the features that
were computed as its input. Although some authors apply
their method on other datasets besides their own (notably
that of (Huang et al., 2006)), the field has no generally agreed
benchmark datasets and no agreed-upon evaluation criteria.

As observed from Table 1, the linear feature-based tech-
niques can be mainly categorized into curvature based,
Fourier based, cluster tree based or contour based techniques.

The curvature based techniques typically analyse the local
curvature information of the fracture surfaces (concave and
convex regions) to performpairwisematching and alignment.
One of these methods is the early well-known method by
(Huang et al., 2006) for automatic reassembly of 3D digital
models of broken fragments. They extract clusters of multi-
scale integral invariant features for each fracture surface and
use a forward search algorithm to identify patches of sim-
ilar features for pairwise matching. (Li et al., 2020) is one
of the recent extended methods of Huang et al.’s approach.
They present a simple well-evaluated method for pairwise
matching and alignment of 3D fragments. They conduct an
initial boundary-curve based comparison for excluding dif-
ferent fracture surfaces. Then they perform fine alignment
based on matching concave and convex patches of the com-
plementary fracture surfaces. They extract such concave and
convex regions using Gaussian and mean curvature. (Son
et al., 2017) also propose reassembly of fractured objects
using a surface signature descriptor based on whether a point
on the fractured surface is convex or concave. The similar-
ity between two fracture surfaces is calculated based on the
spin images of feature curve points. The feature curve is the
boundary between convex and concave regions and describes
the geometric characteristics of a fracture surface. Formatch-
ing fracture surfaces, distance and normal deviation between
two feature curves are used.

Fourier based techniques compute the Fourier coefficients
of salient curves extracted from the fracture surfaces. For
pairwise alignment, the descriptor curves are usually clus-
tered and matched according to their Fourier representation.
One of these methods is (Altantsetseg et al., 2014). They
characterize the fracture surfaces by clusters of feature points
and extract descriptor curves along the principal directions
of these clusters. The Fourier coefficients of each descrip-
tor curve are computed by using Fast Fourier Transform.
For the alignment of fracture surfaces represented as point
clouds, the total power of the extracted descriptor curves of
each cluster are compared. (Alzaid and Dogramadzi, 2019)
present another method for automatic reassembly of frac-
tured objects based on Fourier representation. Their method

uses 2D boundary curve features associated with Fourier
descriptors for pairwise matching and alignment.

(Winkelbach andWahl, 2007) propose a cluster-tree based
method for pairwise matching and alignment of 3D frag-
ments. Their method follows a cluster tree matching strategy
to find optimum alignment. The fragments are matched pair-
wise, in a hierarchical manner, by descending the cluster
trees simultaneously in a depth-first fashion. The use of
a cluster tree representation for object reconstruction and
bone fracture reduction has also been studied by (Liao et al.,
2020). They introduce a region-pair invariant feature (based
on geodesic distance) combined with a balanced cluster tree
to select the best region contact pairs from a valid potential
pool for matching.

The contour based techniques perform matching and
aligning of the fracture surfaces focusing on their outer bor-
der (outline), not their inner fracture region. These techniques
are more well-suited for flat fresco fragments or non-abraded
fracture surfaces. (Vendrell-Vidal and Sánchez-Belenguer,
2014) present a discrete pairwise approach for registering
flat fresco fragments. Their method performs a hierarchi-
cal search strategy that minimizes a cost function which
only focuses on the contour of fragments, instead of the
inner local patches. Papaioannou et al. (2017) also propose
a semi-automatic pipeline for reassembly of 3D archaeolog-
ical objects and restoration of missing parts. For pairwise
matching and alignment, they combine the featureless rigid
geometric registration of (Mavridis et al., 2015) for the frac-
tured surface of the facets with the alignment of the extracted
feature curve point sets of the intact object’s surface, as
proposed by (Andreadis et al., 2015). Their method is an
extension of (Mavridis et al., 2015), where feature curves
from the non-fracture surfaces of the objects are also intro-
duced in order to address the matching of adjacent fragments
with a minimal or even absent matching surface.

Machine Learning methods are only now beginning to
be applied; (Zhang et al., 2018) propose a pipeline for the
reassembly of thin-shell and thick fragments with mostly flat
fracture surfaces represented as point clouds. They convert
the problem of fragment matching into a GAN matching.
The initial pairwise alignment is performed by comparing
guiding points on the boundary contours and the alignment
is then refined using ICP.

None of the methods mentioned so far employ the funda-
mentally non-linear nature of bringing objects into contact.
There is an asymmetry in the relative alignment of two frac-
ture surfaces: in principle penetration is not allowed (and
should not be treated as some minor squared error), missing
elements are fine (and not a punishable as a large squared
error), abrasion noise is one-sided and will naturally lead to
acceptable gaps in optimally aligned fragments.

We thus observe that the complementary nature of a
fit between fracture surfaces, and the one-sided ‘noise’

123



International Journal of Computer Vision (2022) 130:2184–2204 2187

Fig. 1 The pairwise alignment workflow pipeline

(abrasion) that may naturally occur while not affecting
our confidence in a match are ill represented by classical
linear methods: Archaeological complementarity is essen-
tially non-linear. We show in this paper that the framework
of Mathematical Morphology (MM) (Serra, 1986) (with
its opening and closing scale spaces) enables the proper
complementarity-preserving representation of fracture sur-
faces, while being insensitive to missing information in
exactly the correct non-linear way. Mathematical Morphol-
ogy was originally developed for the study and analysis of
geometric and topological structures especially on digital
images (Haralick et al., 1987; Dougherty, 2018; Serra and
Soille, 2012). It has also been applied for studying the geom-
etry of contact (Dorst and van den Boomgaard, 2000). Our
use for alignment of complementary 3D archaeological frac-
ture surfaces is new.

Other people have observed that MM can be useful in
quantitative shape characterization tasks due to its insen-
sitivity to missing information (e.g., (Attali et al., 2008)).
Specifically, (Chang et al., 2004) used anMM-based method
for approximate global point cloud registration of models
with distinctive global characteristics, extracting features
from a carefully simplified medial axis. Their method would
not work on the fractal and rather planar fracture surfaces
we encounter; as we will show, a different way of extracting
morphological features from a medial axis is then useful to
achieve accurate alignment.

1.3 Contributions

The main contributions of our method are as follows:

– We propose a complete pipeline for accurate pairwise
alignment of abraded archaeological fracture surfaces
using the non-linear complementarity preserving prop-
erties of Mathematical Morphology.

– We characterize fracture surfaces through a concise set of
robustmorphological feature points by directly analysing
computed distance transforms and tracing their associ-
ated provenance information.

– We perform a perturbation analysis of the morphological
features to quantify their reliability.

– The MM features are endowed with descriptors to facil-
itate the heuristics of establishing correspondences for
a RANSAC/Procrustes registration which produces an
accurate alignment with little penetration.

– We additionally develop a refined version of ICP that
works exclusively on the flank regions of the fracture
surface, which were found to be more important than the
peaks and valleys for stable alignment.

– We suggest new evaluation criteria for the fitting qual-
ity, taking into consideration both penetration and gap
regions.

2 TheWorkflow Pipeline

Our workflow pipeline of Fig. 1 provides an overview of
the steps required to perform the pairwise alignment of a
suggested pair of complementary archaeological fragments:

1. Extract the meshes A and B of the two fracture facets to
be aligned, using our Faceting technique from (ElNaghy
and Dorst, 2017).
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2. Characterize A and B, each by our novel morphologi-
cal multi-local features: the centre point of the critical
spheres that bound the fracture facet from above (3PC)
and below (3PO). Based on the local geometry, establish
characteristic descriptors and a measure of the reliability
of each MM feature.

3. Establish possible correspondences between the 3PC fea-
tures of A and 3PO features of B, and vice versa, using
the morphological descriptors.

4. Employ RANSAC: using a set of random correspond-
ing matched MM features, apply a reliability-weighted
Procrustes method to construct a candidate rigid body
motion for alignment. Continue sampling till an align-
ment is supported sufficiently by enough inliers.

5. To refine the alignment suggested by RANSAC, use ICP
on a set ofmorphologically selectedmesh vertices (which
we call ‘flanks’).

6. Compute and display quality measures on the fit suitable
for interpretation by a trained archaeologist.

The paper is organized along the lines of these workflow
steps. We apply our method to align real artefacts, with a
focus on accuracy of the resulting alignment and the con-
ciseness of the morphological characterization relative to the
original fracture surface.

3 Boundary Morphology on Fractures

Our method processes only fracture facets, and does so in a
morphological manner. This preliminary section briefly jus-
tifies that methodology.

3.1 Fracture Facets from Artefact Meshes

Scans of artefacts are processed when their data is ingested
into the GRAVITATE system as described in (Scalas et al.,
2020). For each fragment, this ingestion involves standard-
ization of its metadata, but also producing regularized mesh
versions of the geometry, in different resolutions suitable for
further processing.

In our geometrical approach to fitting and pairwise align-
ment, we employ only the fracture parts of the artefacts. The
terracotta fragments that form the GRAVITATE data are uni-
form and brittle in consistency. Such artefacts break in a
simple way, leading to rather straight fractures. This permits
the subdivision of the total fracture regions of the digitized
artefact mesh into ‘facets’. The fracture facets are extracted
by the Faceting preprocessing procedure we developed in
(ElNaghy and Dorst, 2017).

The resulting submeshes are the mesh representation of
Monge patches (i.e., local height functions in their own coor-
dinate system), and our faceting should guarantee them to be

Fig. 2 a Fracture surface with blue local normal directions. bMapping
of the normals to a unit sphere of directions. c The minimum bounding
sphere (in green) determines the minimum bounding cone on the unit
sphere of directions (in cyan). From (ElNaghy and Dorst, 2020) (Color
figure online)

Lipschitz (i.e., slope-limited) surfaces. Under those assump-
tions, a terracotta fracture facet has a limited and balanced
distribution of normals, as illustrated in Fig. 2. We use the
Lipschitz principal direction as the normal axis of the fracture
facet mesh in all further processing.

3.2 Complementarity Preservation under
Simplification

As we noted, Mathematical Morphology (MM) is funda-
mentally the mathematics of contact (Dorst and van den
Boomgaard, 2000). Its operations allow one to establish
quantitatively how sets overlap or are complementary to
each other. When used on sets with noise, the non-linearity
of Mathematical Morphology enables the one-sided treat-
ment we need when performing alignment of broken objects:
penetration is undesirable, a small separation explicable by
abrasion is allowed; missing parts do not affect the fitting of
what did survive. Mathematical morphology is a pertinent
framework that preserves these contact properties under its
simplifications (ElNaghy and Dorst, 2020).

There are two dual simplification operations in mathe-
matical morphology: opening and closing (‘dual’ means: in
a binary situation, performing an opening on an object is
identical to performing a closing on its background, and vice
versa). Because of isotropy of our given artefacts,we perform
those operations with a ball (‘spherical structuring element’),
of a variable radius ρ.

In intuitive terms, consider a fracture facet, outside facing
upwards. The result of closing a fracture facet at scale ρ is
to produce the surface formed by a ball rolling over the frac-
ture (see Fig. 3). Protrusions (‘peaks’) will still be present
at the original locations, but valleys will have been filled by
spherical caps and hence ‘smoothed away’. Similarly, the
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Fig. 3 A fracture facet, with a rolling ball on top forming its closing,
and a rolling ball below tracing out its opening

Fig. 4 A fracture facet, and its closing (above) and opening (below)
surfaces at a range of scales. Adapted from (ElNaghy and Dorst, 2020)

opening of a fracture surface is the surface formed by rolling
a ball underneath it: thismostly preserves the pits and valleys,
but rounds the peaks spherically from below. Together, these
opening and closing surfaces bound the actual fracture sur-
face from above and below, with an accuracy parametrized
by the spherical scale ρ, see Fig. 4.

In (ElNaghy and Dorst, 2020), we proved that when these
dual morphological operations are applied to the common
fracture of an object A aligned in exact contact with its
counterpart B, the resulting simplified surfaces obtained are
still aligned in exact contact: open(A) matches close(B) and
close(A) matches open(B) at any scale ρi . Moreover, the
coarser scale simplifications subsume the finer scales. More
precisely phrased, for different scales R and ρ with R > ρ,
the complementarity and containment relationships for two
masked fracture facets AM and BM are:

γR(AM ) ⊆ γρ(AM ) ⊆ AM ⊆ φρ(AM ) ⊆ φR(AM )

� cR � cρ � c � cρ � cR

φR(BM ) ⊇ φρ(BM ) ⊇ BM ⊇ γρ(BM ) ⊇ γR(BM )

Herewedenoted a closingby a sphere of scaleρ byφρ , and
the opening at scale ρ by γρ . The cρ denotes the morpholog-
ical complementarity of the (simplified) fracture surfaces; its

subscript indicates a scale dependence. Our analysis showed
that complementarity only holds exactly at a reduced area of
the fractures, shrunk by 2ρ.

To compute such complementarity directly on fracture
facets, in (ElNaghy andDorst, 2020)we extendedMathemat-
ical Morphology to a ‘Boundary Morphology’, specializing
the usual morphological operators to be valid on boundary
surfaces rather than volumes.Wewill employ that framework
in this paper.

4 Pairwise Alignment byMorphological
Features

4.1 Morphological Features

Aswe demonstrated, the opening and closing surfaces bound
an original fracture surface by spheres, and thus simplify its
representation. However, not all parts of these bounding sur-
faces at all scales (i.e., spherical radii) are equally descriptive.
We propose to use a small set of the rolling balls at character-
istic locations and scales asmorphological features to encode
the surface, and then use only those features (rather than the
surfaces themselves) for alignment.

To produce the features required for alignment, we recall
the observation from Sect. 3.2 that themorphological closing
process results in a surface of which large parts are spher-
ical caps (see Fig. 4, especially at the coarser scales, and
Fig. 5). Moreover, as the scale increases, the surface tends to
be hierarchically composed of fewer, larger and more clearly
separated spherical caps. The centres of the balls to which
these spherical caps belong can be extracted from the prove-
nance map of the distance transform computation (which
specifies which point on the original fracture generated a
given point on theMMscale space surface). In fact, these cen-
tres are medial axis points of the complement of the extruded
fracture mesh volume.

With increasing scale, the ongoing morphological sim-
plification can be characterized in terms of fewer yet more
distinctive medial axis feature points, which can therefore
serve as 3D morphological features. Moreover, these points
can be tagged by their significance for the MM simplifica-
tion (see Fig. 5a). Medial axes are notoriously sensitive to
discretization (though they can be made robust (Attali et al.,
2008)) but with our provenance approach, we can retrieve
their key features effectively. Fig. 5b is an exploration of this
idea. It shows the 30 most distinctive sphere centres which
are capable of representing 30% of the simplified (closed)
fracture facet at scale 30 mm. The fracture facet is the same
as in Fig. 4, which is about 6 × 2.5 cm size.

At a fixed scale ρ, the ball of that radius will roll mostly
on one or two contact points of the surface; but at certain
positions, it touches three contact locations, see Fig. 6. Such
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Fig. 5 Morphological characterization of fracture surfaces through 3D sphere centres points. a Each medial axis point locally simplifies a part of
the surface by a spherical cap at the chosen scale. b The 30 most relevant feature points and their spherical caps. From (ElNaghy and Dorst, 2020)

Fig. 6 A 3-point closing (3PC) feature (the bounding sphere centre
and radius) and some of its descriptors based on the 3-point contact
geometry. We also show the peak components (in gold) of the facet at
the scale of the sphere (i.e., the vertices that can be touched by a rolling
ball with the shown radius)

3-point contacts are very localized, and therefore supply use-
ful features for accurate alignment. Moreover, the same three
points (or points very close to them) will support a range of
contact sphere sizes, so they are relatively stable. Aswe grow
the scale, the local contact sphere will become so large that
it touches the surface at a fourth point; increase the radius
slightly more, and that contact will have taken over from
one of the three original points, and support the new contact
sphere. The radius at which this happens thus localizes the
multi-localmorphology not only in location, but also in scale.

Such ‘3-point contact spheres’ are the preferred scale
space events to use as our morphological features, since they
remove the arbitrariness of the scale parameter from our
characterization. The features’ scale is locally determined
intrinsically by the multi-local morphology of the surface
itself; and the same is likely to happen in the complemen-
tary counterpart, since that fracture should have a similar, but
dual, morphology.

We thus simplify both the opening and closing surfaces as
being bounded by these characteristic spheres, and store their
location and radius as ourMM features of the fracture facet.
One feature point is thus a crystallization ofmuchmulti-local
information on how to tightly bound the surface around that
spatial neighbourhood and that scale. One can visualize the
fracture surface in our morphological feature representation
as having a set of spatial points suspended over, but rigidly
tied to, the surface (as in Fig. 7). The 3-point contact fea-
tures of closing we denote as 3PC, of opening as 3PO. As
we will demonstrate in Sect. 7, aligning a small subset of
such features is enough to align the original fracture facets
accurately.
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Fig. 7 Closing (3PC, above) and Opening (3PO, below) morphological features bounding a fracture surface from both sides. Each MM feature
point is colour coded by the scale (sphere radius) it represents

4.2 Distance Transform Based Computation of MM
Features

Though our MM features are inspired by the bounding
through opening and closing, they can be computed from
a study of the simpler operations of dilation (spherical
thickening) and erosion (spherical thinning) surfaces at
different scales. The closing features are based on the (dila-
tion) distance function, which denotes for each point above
the surface its distance to the closest point of the sur-
face. To determine whether a point is a 3-point contact
sphere, we analyse the local differential structure of the
distance function: these feature events have a discontinuity
along the iso-distance-surface they reside on, the branch-
ing feature points have moreover a discontinuity in the scale
direction.

We follow the Boundary Morphology framework pre-
sented in (ElNaghy and Dorst, 2020) and compute the
distance function on a discrete grid, with one axis aligned
with the Lipschitz principal direction of the facet (see Fig. 2).
Thus the features we compute are invariant under rigid body
motions of the facet. We employ the linear-time ‘distance
transform’ algorithmof (Maurer et al., 2003), butwe compute
the Euclidean distance directly to the fracture mesh vertices
rather than on the binary representation of the surface. For
each grid point, we not only maintain the actual distance ρ,
but also a pointer to the actual mesh vertex that achieved this
distance (one of the contact points). The whole 3D grid of
these vertex indicators we call the provenance map.

We use the neighbourhood structure of the provenance
map to extract the 3PC and the 3PO feature points by

analysing the type of contact at the disappearance event of
every point in the discrete distance field. We specify this
procedure in detail in Algorithm 1 (see Fig. 8). Consider the
distance transform grid points at increasing distance values
of their scales. When a facet mesh vertex V last appears at
scale ρ in the dilation distance field, this implies that V must
have been a part of the closing surfaces at all scales up to ρ;
but at larger scales, it no longer is. We label each vertex of
the mesh with the value of ρ at which it disappears; a heat
map of this function is shown in Fig. 9. By thresholding this
function, we can determine the connected components of the
mountain peaks (connected along the original mesh edges)
at different scales. Those ‘peak components’ are then used
to determine whether scale space events are possibly charac-
teristic, for at characteristic scales a peak stops contributing
to the provenance map. We thus need to keep track of the
mountain peaks in order to detect the 3PC and the 3PO fea-
ture points. This is done by exploring the distance field going
from large scales to smaller ones. This order of exploration
enables the detection of all 3-point contact medial axis points
resting on distinct mountain peaks. Later on, a subsequent
RANSAC retains the most significant ones which are mostly
the branching points of the medial axis. Going the other way
around (from small to larger scales) would not allow identi-
fying themountain peaks since theywould always bemerged
into larger contiguous components, which might lead to the
detection of non-characteristic points as features.
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Fig. 8 Algorithm for the extraction of 3PC MM feature points. The
same algorithm is followed to extract the 3POMM feature points using
the dilation distance field of the upside down fracture surface facet (with
inverted normals)

4.3 Description and Reliability of MM Features

To perform pairwise alignment, we could treat the locations
of the set of feature points of the two fractures as unlabelled
point clouds, and use a standard 3D point cloud alignment
algorithm such as ICP. Instead, we choose to increase effec-
tiveness and precision by employing themulti-local structure
of the individual 3-point contacts that led to those features
by encoding it in well-chosen morphological descriptors.
We illustrate those descriptors in Fig. 6: the sphere radius,
the area of the 3-point contact triangle and the area of the
circumscribed circle of the triangle. These descriptors are
the outcome of a detailed stability analysis performed in the
Appendix of this paper.

The Appendix shows that not all 3-point contacts are
equally stable: we perform a geometrical analysis on how
much the sphere of an MM feature is affected by small per-
turbations of the fracture surface. The result is that spheres
resting on peaks and whose 3-point contacts form an obtuse
triangle are very sensitive to small displacements caused by

Fig. 9 A function on a facet mesh that shows, for each vertex V , the
largest scale atwhichV canbe touchedby a rolling ball of that scale as its
radius. At larger scales, the vertex can no longer appear in the closing
surface of the facet. We show both closing radius (dilation distance
function value) and opening radius (erosion distance function value).
The colour bar is logarithmic, the value 2 indicates a radius of exp(2) ≈
7.5 mm; the maximum computed radius was exp(4) = 60 mm. This
fracture facet is approximately 60 × 10 mm long

abrasions; such spheres are most stable when resting on a
more-or-less equilateral triangle of peaks. Therefore, as a
reliability measure of each MM feature we use ‘equilateral-
ness’ (defined as the ratio of the areas of the contact triangle
and its circumscribed circle, see Fig. 6).

We also demonstrate in theAppendix that 3-point contacts
with very small triangles should be excluded as features, as
they tend to be very unstable under discretization (not only of
the scanning process, but also of the discretized computations
we perform). Mid-range spheres are generally found to be
quite stable. This involves the ‘flanks’ of the fracture surface,
which will be treated later in Sect. 5.2.

5 Pairwise Alignment

Our preparations thus characterize each fracture facet by
two sets of morphological feature points. The 3PC features
bound the surface from above at characteristic locations,
and are derived from the dilation distance field; the 3PO
features bound from below, and are computed from the ero-
sion distance field.1 The MM features, augmented by their
descriptors and the reliability measures, provide the infor-
mation to perform the pairwise alignment.

1 We in fact compute the 3PO features as 3PC features of the dilation
distance transform of the upside-down facet.
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Fig. 10 Morphological feature correspondences: RANSAC inliers of a
pair of complementary matching fracture facets. Note how RANSAC
adaptively chooses among MM features at many scales, selecting cor-
respondences for their effectiveness in the actual pairwise alignment

5.1 RANSAC

Our alignment method employs standard RANSAC (Derpa-
nis, 2010), but on theMM features rather than on the original
mesh (as illustrated in Fig. 10). To provide RANSAC with
the required initial subset of hypothetical inliers, we com-
pute a set of potential corresponding pairs between the MM
features of the two fractures, based on similarity of their
descriptors. The actual alignment of the fracture surfaces is
based on the spatial locations (the sphere centres) of the MM
features. Thus, the feature descriptors are only used to guide
RANSAC.

ForRANSAC todetermine a 3D rigid body transformation
(translation and rotation), we need a minimum of three cor-
responding pairs of feature points. To employ both upper and
lower bounding of the surface in a balancedmanner, we actu-
ally use two pairs of each (for a total of four pairs), enforcing
twoof the preliminary corresponding pairs at each iteration to
be selected from the initial correspondences between the 3PC
points of the first surface and the 3PO points of the second
surface, and the other two from the initial correspondences
between the 3PC points of the second surface and the 3PO
points of the first surface. It employs a weighted version of
the Procrustes method (Gower, 1975) (using the reliability
measures of Sect. 4.3 as weights) to compute a hypotheti-
cal transformation. We have not found the need for initial
approximate alignment, so the initial transformation is fully
arbitrary. The RANSAC algorithm terminates after reaching
the best possible transformation between a set of outlier-free
feature correspondences.

RANSAC may fail to find an acceptable 3D rigid body
transformation (based on the corresponding MM features),
thismay be an indication that the fractures suggested for pair-
wise alignment are actually not matching. Though enough
matching corresponding pairs of features can usually be

Fig. 11 The flanks of a fracture in blue, non-flanks in yellow (and in
cyan the transitions). The fracture surface size is about 30 × 25 mm
(Color figure online)

found (based on the similarity of the associated feature
descriptors), the failure occurs when either a transformation
could not be found or the RANSAC feature-based alignment
error is unacceptably high. This suggests that our method
could also sensibly be used in the fragment selection phase
of the archaeological workflow, when fragments are nomi-
nated for pairwise alignment.

5.2 ICP on Flanks

As we will see in the experiments of Sect. 7, RANSAC
on MM feature points provides good alignments. But it is
quite customary to follow RANSAC’s best effort on inlier
features with a further refinement step on the result, using
more of the actual data. A standard ICP (Besl and McKay,
1992;Chen andMedioni, 1992; Fitzgibbon, 2003) on all facet
points would try to minimize an MSE, and thus potentially
destroy our carefullymaintainedmorphological complemen-
tarity (with its distinction between penetration and missing
parts).

We therefore propose to preserve the morphological
nature of our complete pairwise alignment method by apply-
ing ICP only on the mesh points in the ‘flank regions’ of
the fracture surfaces. These are the relatively flat sides of
the mountainous fracture landscape, rather than its peaks or
valleys (‘inflection points’ (Park and Lee, 1996) is a cor-
rect intuition). Our analysis in the Appendix suggests that
the 3-point contacts resting on the flanks are especially sta-
ble. Archaeologically such contact points are less likely to
abrade; and when they do, the displacement of the exact con-
tact point tends to be tangential to the sphere, which the
Appendix shows has no effect to first order.

Figure 11 shows such flanks (in blue) of a fracture, mor-
phologically computed as the surface areas at which the
maximumballs touching from above and below have approx-
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imately equal sizes. Such places must exist contiguously
around each mountain and valley by the intermediate value
theorem: the sizes of the opening spheres (small at the peaks
and big at the valleys) and closing spheres (big at the peaks
and small at the valleys) have to cross over somewhere. The
flank regions can thus be completely identified morphologi-
cally, through computing the difference between the dilation
and erosion distance functions of each fracture surface (see
Fig. 9). To the best of our knowledge, this way of identifying
flank points morphologically is new.

We use ICP on this morphologically determined subset of
the fracture mesh to refine the final alignment that RANSAC
produces and we will study its effect in the experiments of
Sect. 7.

6 Measuring Alignment Quality

We carefully consider how to evaluate pairwise align-
ment results in general, before proceeding with conducting
our experiments and comparison. Our evaluation measures
should reflect the asymmetrical nature of fitting. We agree
with (Liao et al., 2020) that quantifying the regions of pene-
tration is muchmore meaningful for evaluating the quality of
the fit than just measuring the minimized total MSE error (as
authors of linear methods typically do). This fails to measure
the important distinction between gap and penetration areas.
We propose a more relevant overall measure of the align-
ment quality, obtained by separately computing the weighted
mean of the sum of the distances (Weighted Mean Error) of
the areas of the facets with gaps (WMEG) and penetration
(WMEP) between the aligned fragments. We define these as:

WMEG =

∑

i∈IG
ai ∗ di

∑

i∈IG
ai

,

and

WMEP =

∑

i∈IP
ai ∗ di

∑

i∈IP
ai

.

Here di are the distances, which are counted negative for the
gaps, and positive for the penetrations. IG is the set of mesh
point indices for which di < 0 (the gap part) and IP is the
set of mesh point indices for which di > 0 (the penetration
part). The local surface area ai (Meyer et al., 2003) occupied
by each mesh vertex is used for weighting the alignment
measurement. We also compute the absolute weighted mean
error:

AWME =
∑N

i=1 ai ∗ |di |
∑N

i=1 ai
.

Therefore, all measures are volumes over areas.
We compute the distances di with some care, to accommo-

date locally varying mesh density. Calling the larger fracture
surface of the counter-fitting pairs ‘target mesh’ and the
smaller ‘sourcemesh’, we compute di for every source vertex
as theminimum of three kinds of distances: to the nearest tar-
get vertex, to the nearest target edge, and to the nearest target
triangle.

These error measures are averages, though. A much more
revealing impression of the quality of the alignment is the
spatial distribution of gaps and penetrations through employ-
ing heat maps, as already suggested by (Brown et al., 2012).
We will show an example of this visual evaluation in Exper-
iment 1 below.

7 Experimental Results

To test and evaluate our pairwise alignment pipeline, we
performed two experiments. The first experiment involves
pairwise alignment of real archaeological fragments that have
been scanned by an archaeological institute. The second is a
comparison with a state of the art linear method for pairwise
alignment on non-archaeological fragments.

7.1 Experiment 1: Archaeological Fragments

Wefirst test our pairwise alignment pipeline on different pairs
of real archaeological artefacts belonging to the same collec-
tion. The artefacts are some fragmented Iron Age terracotta
vessels from the excavation at Tell Es-Safi/Gath in Pales-
tine2 made available to the GRAVITATE project by Bar-Ilan
University. The fragments are about 5 to 12 cm in size.

The fragments are highly abraded, where the potential
pairs of complementary fracture facets have been indicated
by an expert.We show the results on six different pairs of frag-
ments (see Fig. 12 and Table 2). The first two pairs (17 - 19)
and (23 - 17) are challenging examples because the fracture
surfaces are only partially fitting with some missing geom-
etry, while the remaining four pairs have narrow fracture
surfaces.

We applied the steps of our morphological pairwise align-
ment workflow to the Gath fragments. Figure 12 shows
visually the alignment results. In many cases, the results
of the RANSAC alignments are already convincing. Fig-
ure 13 shows an example of the best and the worst cases of

2 Information about Gath excavation can be found at https://en.
wikipedia.org/wiki/Gath_(city) and https://gath.wordpress.com.
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Fig. 12 Experiment 1: Morphological feature-based alignment of archaeological fragment pairs. First and third rows: the pairs of fragments with
their extracted facets outlined in red colour. Second and fourth rows: Alignment after RANSAC and ICP on flanks

RANSAC-based alignment and their refinement after apply-
ing ICP on flanks only. The result columns (column 3-5) of
Table 2 shows how much we have reduced the data required
to achieve these results: the MM features are a factor 3 to 10
less than the original facet mesh vertices; and the inliers that
suffice to produce an accurate alignment are a factor 8 to 10
less in number still.

The results of the RANSAC alignment confirm our geo-
metrical intuition: we are indeed capable of computing the
alignment based on producing a simplified bounded rep-
resentation of the fractures, at sufficiently characteristic
locations. The small number of features determining the
final alignment demonstrates the power of the MM repre-
sentation. A more detailed analysis of which features end

up as RANSAC inliers confirms that the abraded fracture
borders are not significant for fitting noisy fragments (they
are apparently too sensitive to abrasion). The results support
our geometrical analysis of the Appendix, that the centres
of spheres leaning on 3-point contacts forming nearly equi-
lateral triangles should be expected as the most useful for
fitting purposes. The inliers are apparently the most stable
and representative features for our pair of fracture facets.

The WMEx measures of Table 2 show that the additional
ICP refinement on flanks indeed slightly refines the already
well-aligned results of RANSAC. Table 2 shows (in its last
column) that only a few iterations are required for this refine-
ment. Since the flank regions contain only about 40% of the
fracture surface, this extra refinement is relatively fast. It
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Fig. 13 Refinement achieved by applying ICP on flanks following
RANSAC alignment for two different pairs of fragments. The left col-
umn shows alignment after RANSAC,while the right column shows the
refinement after applying ICP. The refinement in alignment achieved by
ICP on flanks over RANSAC is more noticeable for the lower pair of
fragments

Fig. 14 Colour-coded signed alignment error computed for a fracture
facet of about 30×25 mm, after the ICP refinement on flanks. The blue
corresponds to gap regions, and red corresponds to penetration regions.
Note that zero error is indicated by orange and that the alignment error
is measured in mm. In our example, the digitization noise is estimated
to be maximum about 0.6 mm. (This happens to be the overlap region
resulting from the pairwise alignment of fragments 17 and 19 after
application of flank-based ICP in the top right of Fig. 13.) (Color figure
online)

achieves a fitting with small misalignment error as shown
quantitatively in the AWME column of Table 2 and visually
in Fig. 12.

The final alignment can be further visually analysed
through a graphical heat map depiction of the local dis-
tancemap as shown in Fig. 14. Complementary visual results
like these give the archaeological user the most easily inter-
pretable indication of the quality of the pairwise alignment
by seeing the distribution of the gap and penetration regions
across the fracture surface. Coupled withWMEs for penetra-
tion and gap, this provides the archaeologist with visual and
quantitative measures that could help him/her better evaluate
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Fig. 15 Pairwise alignment through the concave-convex patches char-
acterization in the CCP method of Li et al. (Li et al., 2020)

the quality of the fit from a broader archaeological perspec-
tive.

7.2 Experiment 2: Comparison with Linear Method

The field of digital archaeological reassembly has no gen-
erally agreed benchmark datasets or criteria for effective
evaluation and comparison. This severely hampers the com-
parison process with other proposed techniques. In addition,
it is not easy to obtain the scanned 3D digitized versions
of real archaeological fragments due to different provenance
and proprietary considerations.

(Huang et al., 2006) made their dataset of freshly broken
artefacts available3, and it begins to play the role of a bench-
mark. However, since the pipeline in (Huang et al., 2006)
focuses mainly on multi-piece alignment “global reassem-
bly” rather than pairwise alignment, we can not directly
compare our results to theirs.

Fortunately, (Li et al., 2020) proposed a recent method for
pairwise alignment towhichwe can compare. It is inspired by
Huang et al.’s approach and applied on Huang’s public 3D
data of brick fragments. This data consists of 6 fragments
made of stone and scanned in the form of dense point set
surfaces (not meshes).

Li et al. used the boundary curves and concave-convex
patches of fracture surfaces to perform pairwise matching
(see Fig. 15). Let us refer to their method as ‘CCP’. In the
CCP method, the fracture surface pairs are aligned using a
modified version of ICP which focuses only on the points of
concave-convex matched patches to optimize the fine align-
ment results. Before the extraction of concave and convex
patches, the fragments undergo a preprocessing step of adap-
tive linear smoothing (Lavoué, 2007) to reduce their noisy
bumpiness. (Li et al., 2020) offer evaluation results of their
method using both the smoothed and the non-smoothed ver-
sions of the brick fragments.

We compare the performance of our method to theirs on
pairs of the non-smoothed brick fragments, since providing
the best alignment for those is what matters archaeologically.
As a preprocessing stage, we first convert the dense point set

3 The 3D Digital Models of the dataset are available at https://www.
geometrie.tuwien.ac.at/ig/3dpuzzles.html.

surfaces into 3Dmeshes using (Cignoni et al., 2008).We then
extract the fracture surfaces using our Faceting technique
(ElNaghy and Dorst, 2017). Figure 16 shows the alignment
results of our method, using both RANSAC and subsequent
flank-based ICP on the eight different pairs of the brick frag-
ments.

Table 3 shows the comparison between the performances
of Li et al.’s CCP method and our method on the brick frag-
ments in terms of the RMS error, alignment time and number
of extracted features. Note that the CCPmethod fails to align
pair (2 - 5) while our method fails to align pair (2 - 4)4. Com-
paring the quantitative measures, our method outperforms
the CCP method in all respects with a smaller number of
features used, a faster alignment speed and a higher accu-
racy of alignment measured in terms of RMS error. We use
RMS error for evaluation and comparison, since this is the
measure used by Li et al. for evaluating their own results.
Unfortunately, their implementation is not publicly available
so we could not apply our own evaluation measures to their
alignment results.

In a sense, the two methods are using complementary sets
of mesh points in their final ICP alignment: the linear method
works by aligning the points of the concave-convex patches
(see Fig. 15), while our non-linear morphological method
mainly aligns the points of the flank regions (see Fig. 11).
As we reasoned in the Appendix, the flanks are the more sta-
ble regions to use for alignment; and this comparative study
nicely confirms that insight.

7.3 Parameter Settings and Time Analysis

For experiments 1 and 2 we used the same parameter settings
for our method, since the fragments are of similar size. We
provide those details now.

Using a distance transform 3D grid of resolution 0.25
mm with a maximum allowed morphological scale of 60
mm, we effectively achieve a bounded simplified represen-
tation of each of the counter-fitting fracture surfaces. The
resulting alignment is exact within the accuracy of the sam-
pling we employ for the distance transform computation (see
results of Experiments 1 and 2). This resolution of 0.25 mm
was initially chosen for storage and computational reasons.
RANSAC aligns fractures using MM features based on this
grid resolution; the fact that subsequent refinement using
flank-based ICP (which works on the original fracture sur-
face) hardly improves on the RANSAC results shows that
the chosen grid resolution was sufficient. We performed an
additional experiment to study the effect of going to half the
grid resolution twice (0.5 mm and 1 mm). This considerably
reduces the time and storage required for the distance trans-

4 This is actually the first example of a failed alignment in all our
experiments; a possible explanation is given in the caption of Fig. 17.
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Fig. 16 Experiment 2: Morphology-based alignment of eight brick fragment pairs

Table 3 Comparison between our method and CCP method (Li et al., 2020) for pairwise alignment of brick fragments. CCP∗ indicates that the
number of ICP iterations was computed for aligning the smoothed versions of the brick fragments (no data has been reported by the authors for the
original fragments ICP number of Iterations)

Fragmen Pairs Fracture Size (mm) Fracture Vertices Number of features Matching Time (s) ICP Iterations RMS error (mm)

CCP Ours CCP Ours CCP∗ Ours CCP Ours

1 34.5 × 32.4 6157 136 131 15 10 13 6 0.2011 0.0459

2 33.8 × 33.6 6091 145 60

1 46 × 29.3 7096 221 17 21 4 10 6 0.1789 0.0684

3 45.6 × 29.1 7132 236 18

1 32.4 × 29.5 7127 186 34 19 7 12 14 0.1267 0.0387

4 32.6 × 29.2 7056 174 33

2 29.3 × 21.5 7731 177 91 19 4 9 7 0.1103 Fail

4 32.6 × 29.2 7056 174 57

2 29.3 × 21.5 7731 177 62 15 9 8 13 Fail 0.0500

5 28.9 × 17.9 7113 91 30

4 36.6 × 28.6 5759 190 59 17 5 13 5 0.1267 0.0712

5 37.4 × 29.1 5654 161 52

4 29.4 × 11.3 6088 190 45 13 5 10 2 0.1567 0.0518

6 29.7 × 11.9 6089 56 16

5 29.4 × 20.6 6178 95 30 11 6 13 5 0.1211 0.0366

6 29.4 × 20.3 5919 100 23

The bold indicates the best results as usually performed in most Computer Vision Literature

form computation. The WMEs measures for the RANSAC
step were still accurate enough to perform ICP on flanks,
achieving the same accurate alignment results (at the expense
of doubling the iterations), though the resolution for comput-
ing the MM features has been much reduced.

Each MM feature is characterized by an ‘equilateral-
ness’ area ratio as a reliability measure (see Sect. 4.3).
The unreliable feature points with area ratio less than 0.1
are excluded from the feature matching process. The ini-

tial correspondences between the feature points passed to
RANSAC for outlier rejection are established by measur-
ing weighted Euclidean distances between their associated
descriptors introduced in Sect. 4.3.

Within the RANSAC computation of the best transforma-
tion, we weigh the contribution to the Procrustes fit for each
pair of corresponding MM features, by the minimum (i.e.,
worst) of their associated reliabilitymeasures. TheRANSAC
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Fig. 17 Thematch between fragment 2 and 4 is a partial match, where a
relatively small fraction of the counter-fitting fracture surfaces overlaps.
The MM features of this overlap region on each of the fragments is
heavily affected by the contiguous part of that fragment, especially at
larger scales, as explained in Sect. 3.2 (For more detail see Sect. 3.2
in ElNaghy and Dorst (2020)). The failure of our method in this case
apparently implies that the overlapping regions are not similar enough
in their features to guide the RANSAC alignment

tolerance threshold computed on theMMfeature spatial loca-
tions was set to about 1.5 mm for our fragments.

In our test cases of Figs. 12 and 16, the yellow fragments
have been selected as the source meshes while the blue frag-
ments have been selected as the target. In case of complete
surface alignment, it does not make a big difference which
one is which. However, in case of partial fracture surface
alignment, the fine alignment convergence is much faster
when the smaller surface is spatially transformed to the larger
fracture surface. The smaller fracture can be easily identified
by measuring the overall surface area of each fracture mesh
using (Meyer et al., 2003).

In the flank-based ICP fine refinement, the flank regions
are computed as having a maximum difference of 3 mm
between their opening and closing distance functions; they
account for about 40% of the overall fracture surface area in
our experiments.

Computation times differ greatly per pipeline step of
Fig. 1. Faceting a 3D model with 50K vertices takes less
than 5minutes,where it ismainly dominated by the 3Dmodel
size and the scale ρ used for defining the neighbourhood over
which the fracture angle is calculated (see Sect. 4 in (ElNaghy
and Dorst, 2017)). This faceting processing time is deemed
acceptable within GRAVITATE, since the Faceting is part of
the once-only inclusion (ingestion) of the fragment data into
the system. Most time-consuming is the computation of the
distance transform on the voxel grid, step 2. This took on
average 3 minutes per fracture mesh. Step 3, the extraction
of the morphological feature points and matching them, took
maximum 5 seconds. Like the Faceting of step 1, steps 2 and
3 need to be performed only once, when a fragment is entered
into the virtual archaeological system. The RANSAC outlier
rejectionof step4 tookonaverage about 1minute and refining

Fig. 18 Abraded fracture facet by 1 mm (on the right) versus non-
abraded facet (on the left). The fracture facet measures about 30 × 25
mm

the alignment by ICP on flanks (step 5) took a few seconds.
We performed our experiments on an Intel(R) Xeon(R) CPU
2.9 GHz×8 computer with 256 GB RAM.

8 Limitations and Extensions

As the results show, our method works well for a range of
fragments. To study its sensitivity, we perturb the data arti-
ficially to mimic abrasion and digitization effects. We also
obtain a preliminary impression of the robustness of our pair-
wise alignment method by attempting global reassembly on
the dataset of (Li et al., 2020).

8.1 Robustness to Abrasion

Terracotta abrades easily, but also has an inner coherence.
The general effect is that abrasion mostly leads to a wear on
protrusions like the small peaks and the sharp borders of a
fracture. This loss of material can be sensibly modelled by a
small morphological opening.

We mimicked the abrasion effect by applying a morpho-
logical opening to one of our Gath archaeological fragments
by a small ball of radius 1 mm, see Fig. 18. The abraded
fragment surface was extracted using the marching cube
algorithm and the fracture mesh A′ is delineated out of
the whole opened fragment using the Faceting method of
(ElNaghy and Dorst, 2017). We compared the morphologi-
cal features of fracture surface A′ to the ones characterizing
the non-abraded facet A (which has been extracted from the
same fragment before applying the opening effect). A is the
fracture facet of fragment number 19 in Table 2, involved in
its alignment with fragment number 17 (see top left pair of
Fig. 12).
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Fig. 19 Resampling of a fracture facet mesh. The original fracture sur-
face is first upsampled to increase its resolution. Then, quadratic edge
collapse is applied to the upsampled version to retain its original reso-
lution and topology with different sampling. The zoomed-in subfigure
shows the difference between the original mesh A (red edges) and its
resampled version A′ (blue edges) (Color figure online)

Fracture facet A is characterized by 654 3PC and 386 3PO
feature points, while A′ is characterized by 573 3PC and
345 3PO feature points. The reduction in the number of 3PC
points is higher than that in the number of 3PO points, since
abrasion (as an opening) affects themorphological closing of
a fracture facetmore than its opening (see Sect. 5 in (ElNaghy
and Dorst, 2020)). The feature points range from scale 5 to
60 mm, as expected the lower scales are more sensitive to
abrasion.

Matching the features of A against A′ produced 294 3PC
and 170 3PO unique matching feature pairs. In an exper-
iment where we made A′ play the role of the counterpart
of A, RANSAC adaptively selected 67 corresponding MM
features as inliers. Since this is comparable to the number
of inlier features selected in regular pairwise alignment (see
first row of Table 2), we find that a sufficient number of sta-
ble features remains after (artificial) abrasion to establish an
accurate pairwise alignment.

8.2 Variations in Digitization

In GRAVITATE, we are particularly interested in digi-
tally relating artefacts dispersed over different collections.
Such archaeological artefacts are likely to be digitized by
different museums or archaeological institutions with differ-
ent scanners. Non-consistent registration and post-scanning
techniques are frequently applied to the raw scanner data. As
a consequence, counter-fitting fracture surfaces suggested for
alignment across collections are expected to be sampled dif-
ferently with different digitization. We actually observed in
our experiments that the mesh sampling varies even among
fragments belonging to the same collection.

Fig. 20 a and b: Two pairwisemorphology-based alignments of an arti-
ficially broken archaeological artefact. c: Their combination achieves
an acceptable global reassembly

To get an impression of the effect of varying digitization
on our proposed alignment technique, we performed a virtual
experiment (we have no real case to study this effect): we
artificially broke a real archaeological fragment into three
pieces using another real archaeological fracture surface as
a cutter. The fracture surface used for cutting was resampled
on either side of the break to simulate different provenance.
The applied resampling displaced the spatial locations of the
mesh vertices while preserving the original topology (see
Fig. 19). In this particular virtual experiment (see Fig. 20), the
RANSAC based alignment was highly accurate with no need
for further ICP refinement. Even with different sampling,
our method managed to automatically identify a small set of
stable feature pairs required for pairwise alignment (with an
average ofWMEGof−0.038mm,WMEP of 0.036mm, and
AWME of 0.046 mm for an object of about 27 × 17 mm).

8.3 Towards Global Reassembly

Though we have designed our method to work on pairs
of fragments, one might wonder how well it would work
when viewed as a step in a global alignment method. Being
morphological rather than linear, the reassembly should be
insensitive to the incompleteness of fragments themselves,
and of the collection they belong to. Figure 21 shows the
effect of composing a global restoration from the pairwise
results of Experiment 2. The result is a quite satisfactory
completed brick, and rather convincingly confirms the accu-
racy of the individual alignments in our pairwise method. If,
as is common in global reassembly, a global optimization
step is applied afterwards, it should be based on applying
ICP on flanks only to respect the morphological aspects of
complementary pairwise alignment. Figure 20c shows a sim-
ilar result for three artificially broken head fragments. These
results confirm that our method could be a reliable subpart
of a system for global reassembly of broken archaeological
artefacts.
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Fig. 21 Global Reassembly by selected pairwise morphology-based
alignment of brick fragment pairs. The insert shows in red lines the
pairwise alignments that have been involved in the global alignment of
the six brick fragments (Color figure online)

9 Conclusions and FutureWork

Wehave shown that features basedon the opening and closing
scale spaces of mathematical morphology contain sufficient
information of the essentials of a fracture surface, for it to be
aligned with a counterpart. We demonstrated this on a mesh
representation of abraded archaeological fragments and non-
archaeological freshly broken fragments.

The morphological features were computed bymeans of a
discrete distance transform on a voxel grid, augmented with
a provenance map. This enabled us to determine stable and
localizable morphological feature points, determining criti-
cal bounding spheres for the fracture surface. In the alignment
process, a set of heuristic descriptors was defined to guide
preliminary matching correspondence and the weighted Pro-
crustes within RANSAC.

We observed how the alignment actually dependedmostly
on flank-based MM features, and refined it by applying
ICP purely on those flank points. This flank-based ICP
slightly improved the RANSAC result and it may be a useful
MM-based alignment method by itself. There is acceptable
penetration in the final alignment results, within the bounds
of the digitization noise of the archaeological fragments. We
have also shown how our morphological method performs
better than the state of the art linear method of (Li et al.,
2020).

The economical characterization by our MM features of
essential aspects of fractures, in a scale-space manner, may
also make them suitable for an earlier stage in a reconstruc-

tion pipeline: automatically suggesting potential matches.
(Actually, in a typical archaeological workflow, such sugges-
tions are based on more than merely the geometrical fracture
surfaces; one may employ local curvature, outward designs,
or human expertise to do this more effectively.)

The capability of 3D compactmorphological feature char-
acterization (Yang et al., 2017) is potentially applicable to
other fields like 3D object retrieval (Bustos et al., 2007), 3D
object classification (Biasotti et al., 2006) or the adaptive
simplification of surfaces for variable resolution rendering
in computer graphics (Shaffer and Garland, 2001).

We have shown that the proposed morphological features
can guide precise pairwise alignment (andmay even be useful
in global reconstruction). That capability is not only required
in archaeology, but also has uses in other fields: such as bone
fracture reduction in medical applications (Liao et al., 2020),
skull reassembly in forensic investigation (Zhang et al., 2015)
or even in reassembling broken meteorites (de Vet, 2015).

Linear methods prevail as a default approach to alignment
(as they do in many fields); we have shown that ‘comple-
mentary pairwise alignment’ is better solved by exploiting
its particular type of asymmetric non-linearity, which Math-
ematical Morphology encodes so well.
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Appendix

Let us consider how sensitive the centre of a sphere with
radius ρ, passing through three points pi (with i ∈ {1, 2, 3})
is to perturbations of those points. We consider only small
perturbations so that the problem becomes linear. Take the
sphere centre as the origin, and consider the perturbation of
point p1 by a small additive vector t1. The disturbance x1 of
the sphere centre due to that perturbation alone, keeping the
other points in place, is given by:

x1 = t1 · p1
n1 · p1 n1,

wheren1 = p2×p3. Forx2 andx3 the expressions are similar.

Proof We use 3D geometric algebra to analyse this in a
coordinate-free manner, employing its wedge product ∧ and
its geometric division operation / to construct and manipu-
late the subspaces involved5. Since the radius of the sphere
does not change, we have three conditions on x1:

1. Since ‖p2 − x1‖ = ‖p3 − x1‖ = ‖p2‖ = ‖p3‖(= ρ) to
first order, we must have x1 · p2 = x1 · p3 = 0; therefore
x1 · (p2 ∧ p3) = 0. Geometrically, x1 is perpendicular to
the (p2 ∧ p3)-plane.

2. The radius remains the same, so ‖p1+t1−x1‖ = ‖p1‖(=
ρ); to first order therefore t1 · p1 = x1 · p1.

3. Since we are in 3D, we have x1 ∧ p1 ∧ p2 ∧ p3 = 0.

Combining these conditions into one geometric product, we
find x1 (p1 ∧ p2 ∧ p3) = (t1 · p1) (p2 ∧ p3) so that:

x1 = (t1 · p1) (p2 ∧ p3)/(p1 ∧ p2 ∧ p3)

= (t1 · p1)/p⊥
1 ,

where p⊥
1 ≡ (p1 ∧ p2 ∧ p3)/(p2 ∧ p3) is the component

of p1 perpendicular to the (p2 ∧ p3)-plane (see e.g., (Dorst
et al., 2009)), the geometric product division by a vector
y is multiplication by y/‖y‖2. One may convert this result
into the classical linear algebra formula above for x1, by
dually characterizing the plane bivector p2∧p3 by its normal
vector n1 ≡ p2 × p3, rewriting p⊥

1 to p⊥
1 = (n1 · p1)n1 and

substituting. �
We make some observations:

– When p⊥
1 is small relative to p1, which happens when

the triangle formed by the three points is acute at p1,
the displacement becomes large. Therefore the situations
where the three contact points form an acute triangle tend
to be less stable.

5 https://en.wikipedia.org/wiki/Geometric_algebra.

– On the other hand, if t1 is perpendicular to p1, it leads
to no displacement of the centre from p1’s displacement
(to first order). This tends to happen at locations where
the sphere rest tangentially on a flat flank of the fracture
landscape.

– Note that the magnitude of ‖p1‖, which is the radius ρ,
plays no role in the formula: displacements are absolute
- though their relative effect given a maximum abrasion
displacement ‖t1‖ is smaller for larger spheres.

Small perturbances of the other points propagate in the same
manner, so the total displacement x of the centre is their sum:

x = �ixi = �i
ti · pi
n1 · pi pi .

Depending on the nature of the contact of the three points, and
hence their sensitivity to abrasion ti , this equation determines
the stability of the MM feature point.

Arguably the worst case is when all displacements of con-
tact points are radial, so that ti · pi = ρ‖ti‖. This might
happen when all contact points are peaks of the fracture land-
scape. Assuming these would abrade similarly, we may get
a fair impression of the perturbation by taking all ‖ti‖ the
same and equal to ‖t‖. Then the displacement x∗ = ‖t‖ρ/c,
where c ≡ 1/(�i1/p⊥

i ) is the vector of the circumcentre of
the triangle formed by the contact points.6 The magnitude of
this worst case x∗ equals ‖x∗‖ = ‖t‖ (ρ/‖c‖). Since ρ/‖c‖
is smallest for an equilateral triangle, those are most stable;
and the more obtuse the triangle, the larger this worst case
error becomes. A well-known measure for the obtuseness of
a triangle is the ratio of the area of the triangle relative to
the area of its circumscribed circle (the smaller, the more
obtuse); this is what we use in the heuristic matching of MM
features for RANSAC, see Sect. 5.1.

Whenwe consider theMM features of the original surface
relative to those of an abraded surface, the type of contacts
we can expect depend on the scale ρ (i.e., the radius of the
sphere). Different types of contacts have different expected
abrasive perturbances ti ; and then the above analysis deter-
mines the following effects:

– For tiny scales (radii) ρ, spheres will rest against small
protrusions, which are sensitive to abrasion; the ‖ti‖will
be large relative to ρ, and lead to large perturbations. We
expect therefore small-radius features to be very unsta-
ble; since they are unlikely to occur on the counterpart

6 The expression for the circumcentre c follows from ‖c−p1‖ = ‖c−
p2‖ = ‖c−p3‖ so that c ·p1 = c ·p2 = c ·p3 and from (c−p1)∧(p1−
p2)∧(p2−p3) = 0, giving c∧(p1∧p2+p2∧p3+p3∧p2) = p1∧p2∧p3;
these combine to c = (p1 ∧ p2 ∧ p3)/(p1 ∧ p2 + p2 ∧ p3 + p3 ∧ p2) =
1/(1/p⊥

1 + 1/p⊥
2 + 1/p⊥

3 ).

123

https://en.wikipedia.org/wiki/Geometric_algebra


International Journal of Computer Vision (2022) 130:2184–2204 2203

anyway, they will not make good MM features for align-
ment.

– For large ρ, a sphere is more likely to rest on three peaks.
That makes it absolutely sensitive to perturbation, since
this is similar to the worst case we treated above (though
relatively less so, since the ‖ti‖ will be small compared
to ρ). Especially sensitive would be spheres whose sup-
ports deviate strongly from an equilateral triangle, as we
showed.We do expect such large scale features to be use-
ful for alignment with the complementary counterpart, so
we would like to incorporate a number of them; but we
should prefer those from the more equilateral contacts.

– For medium scales, we may find rather stable spheres
resting against three ‘flank’ points; those are alreadymore
protected from typical archaeological abrasion (which
affects the peaks mostly), so the ti ’s are small. Moreover,
since the sphere rests tangentially at flank points, the ti
will tend to be perpendicular to the pi , leading to almost
zero displacement. The acuteness of the triangle is of
less importance now. The features based on flanks should
moreover be very similar on the complementary fracture
surfaces, so they are likely to be both characteristic and
stable.
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