12 research outputs found

    Pain level recognition using kinematics and muscle activity for physical rehabilitation in chronic pain

    Get PDF
    People with chronic musculoskeletal pain would benefit from technology that provides run-time personalized feedback and help adjust their physical exercise plan. However, increased pain during physical exercise, or anxiety about anticipated pain increase, may lead to setback and intensified sensitivity to pain. Our study investigates the possibility of detecting pain levels from the quality of body movement during two functional physical exercises. By analyzing recordings of kinematics and muscle activity, our feature optimization algorithms and machine learning techniques can automatically discriminate between people with low level pain and high level pain and control participants while exercising. Best results were obtained from feature set optimization algorithms: 94% and 80% for the full trunk flexion and sit-to-stand movements respectively using Support Vector Machines. As depression can affect pain experience, we included participants' depression scores on a standard questionnaire and this improved discrimination between the control participants and the people with pain when Random Forests were used. / Note: As originally published there is an error in the document. The following information was omitted by the authors: "The project was funded by the EPSRC grant Emotion & Pain Project EP/H017178/1 and Olugbade was supported by the 2012 Nigerian PRESSID PhD funding." The article PDF remains unchanged

    The affective body argument in technology design

    Get PDF
    In this paper, I argue that the affective body is underused in the design of interactive technology despite what it has to offer. Whilst the literature shows it to be a powerful affective communication channel, it is often ignored in favor of the more commonly studied facial and vocal expression modalities. This is despite it being as informative and in some situations even more reliable than the other affective channels. In addition, due to the proliferation of increasingly cheaper and ubiquitous movement sensing technologies, the regulatory affective functions of the body could open new possibilities in various application areas. In this paper, after presenting a brief summary of the opportunities that the affective body offers to technology designers, I will use the case of physical rehabilitation to discuss how its use could lead to interesting new solutions and more effective therapies

    Learning Bodily and Temporal Attention in Protective Movement Behavior Detection

    Get PDF
    For people with chronic pain, the assessment of protective behavior during physical functioning is essential to understand their subjective pain-related experiences (e.g., fear and anxiety toward pain and injury) and how they deal with such experiences (avoidance or reliance on specific body joints), with the ultimate goal of guiding intervention. Advances in deep learning (DL) can enable the development of such intervention. Using the EmoPain MoCap dataset, we investigate how attention-based DL architectures can be used to improve the detection of protective behavior by capturing the most informative temporal and body configurational cues characterizing specific movements and the strategies used to perform them. We propose an end-to-end deep learning architecture named BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts that are more informative to the detection of protective behavior. The approach addresses the variety of ways people execute a movement (including healthy people) independently of the type of movement analyzed. Through extensive comparison experiments with other state-of-the-art machine learning techniques used with motion capture data, we show statistically significant improvements achieved by using these attention mechanisms. In addition, the BANet architecture requires a much lower number of parameters than the state of the art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201

    Supporting Everyday Function in Chronic Pain Using Wearable Technology

    Get PDF
    While most rehabilitation technologies target situated exercise sessions and associated performance metrics, physiotherapists recommend physical activities that are integrated with everyday functioning. We conducted a 1-2 week home study to explore how people with chronic pain use wearable technology that senses and sonifies movement (i.e., movement mapped to sound in real-time) to do functional activity (e.g., loading the dishwasher). Our results show that real-time movement sonification led to an increased sense of control during challenging everyday tasks. Sonification calibrated to functional activity facilitated application of pain management techniques such as pacing. When calibrated to individual psychological needs, sonification enabled serendipitous discovery of physical capabilities otherwise obscured by a focus on pain or a dysfunctional proprioceptive system. A physiotherapist was invited to comment on the implications of our findings. We conclude by discussing opportunities provided by wearable sensing technology to enable better functioning, the ultimate goal of physical rehabilitation

    Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors

    Get PDF
    Diagnosing pain in neonates is difficult but critical. Although approximately thirty manual pain instruments have been developed for neonatal pain diagnosis, most are complex, multifactorial, and geared toward research. The goals of this work are twofold: 1) to develop a new video dataset for automatic neonatal pain detection called iCOPEvid (infant Classification Of Pain Expressions videos), and 2) to present a classification system that sets a challenging comparison performance on this dataset. The iCOPEvid dataset contains 234 videos of 49 neonates experiencing a set of noxious stimuli, a period of rest, and an acute pain stimulus. From these videos 20 s segments are extracted and grouped into two classes: pain (49) and nopain (185), with the nopain video segments handpicked to produce a highly challenging dataset. An ensemble of twelve global and local descriptors with a Bag-of-Features approach is utilized to improve the performance of some new descriptors based on Gaussian of Local Descriptors (GOLD). The basic classifier used in the ensembles is the Support Vector Machine, and decisions are combined by sum rule. These results are compared with standard methods, some deep learning approaches, and 185 human assessments. Our best machine learning methods are shown to outperform the human judges

    Chronic-Pain Protective Behavior Detection with Deep Learning

    Get PDF
    In chronic pain rehabilitation, physiotherapists adapt physical activity to patients' performance based on their expression of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works have shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this paper, we investigate the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyography data collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting protective behavior within an activity rather than estimating its overall presence. The best performance reaches mean F1 score of 0.82 with leave-one-subject-out cross validation. When protective behavior is modelled per activity type, performance is mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-to-sit, and 0.67 for reach-forward. This performance reaches excellent level of agreement with the average experts' rating performance suggesting potential for personalized chronic pain management at home. We analyze various parameters characterizing our approach to understand how the results could generalize to other PBD datasets and different levels of ground truth granularity.Comment: 24 pages, 12 figures, 7 tables. Accepted by ACM Transactions on Computing for Healthcar

    Multiple Instance Learning for Emotion Recognition using Physiological Signals

    Get PDF
    The problem of continuous emotion recognition has been the subject of several studies. The proposed affective computing approaches employ sequential machine learning algorithms for improving the classification stage, accounting for the time ambiguity of emotional responses. Modeling and predicting the affective state over time is not a trivial problem because continuous data labeling is costly and not always feasible. This is a crucial issue in real-life applications, where data labeling is sparse and possibly captures only the most important events rather than the typical continuous subtle affective changes that occur. In this work, we introduce a framework from the machine learning literature called Multiple Instance Learning, which is able to model time intervals by capturing the presence or absence of relevant states, without the need to label the affective responses continuously (as required by standard sequential learning approaches). This choice offers a viable and natural solution for learning in a weakly supervised setting, taking into account the ambiguity of affective responses. We demonstrate the reliability of the proposed approach in a gold-standard scenario and towards real-world usage by employing an existing dataset (DEAP) and a purposely built one (Consumer). We also outline the advantages of this method with respect to standard supervised machine learning algorithms

    Go-with-the-flow: Tracking, Analysis and Sonification of Movement and Breathing to Build Confidence in Activity Despite Chronic Pain

    Get PDF
    Chronic (persistent) pain (CP) affects one in ten adults; clinical resources are insufficient, and anxiety about activity restricts lives. Technological aids monitor activity but lack necessary psychological support. This paper proposes a new sonification framework, Go-with-the-Flow, informed by physiotherapists and people with CP. The framework proposes articulation of user-defined sonified exercise spaces (SESs) tailored to psychological needs and physical capabilities that enhance body and movement awareness to rebuild confidence in physical activity. A smartphone-based wearable device and a Kinect-based device were designed based on the framework to track movement and breathing and sonify them during physical activity. In control studies conducted to evaluate the sonification strategies, people with CP reported increased performance, motivation, awareness of movement and relaxation with sound feedback. Home studies, a focus group and a survey of CP patients conducted at the end of a hospital pain management session provided an in-depth understanding of how different aspects of the SESs and their calibration can facilitate self-directed rehabilitation and how the wearable version of the device can facilitate transfer of gains from exercise to feared or demanding activities in real life. We conclude by discussing the implications of our findings on the design of technology for physical rehabilitation

    How Can Affect Be Detected and Represented in Technological Support for Physical Rehabilitation?

    Get PDF
    Although clinical best practice suggests that affect awareness could enable more effective technological support for physical rehabilitation through personalisation to psychological needs, designers need to consider what affective states matter and how they should be tracked and addressed. In this paper, we set the standard by analysing how the major affective factors in chronic pain (pain, fear/anxiety, and low/depressed mood) interfere with everyday physical functioning. Further, based on discussion of the modality that should be used to track these states to enable technology to address them, we investigated the possibility of using movement behaviour to automatically detect the states. Using two body movement datasets on people with chronic pain, we show that movement behaviour enables very good discrimination between two emotional distress levels (F1=0.86), and three pain levels (F1=0.9). Performance remained high (F1=0.78 for two pain levels) with a reduced set of movement sensors. Finally, in an overall discussion, we suggest how technology-provided encouragement and awareness can be personalised given the capability to automatically monitor the relevant states, towards addressing the barriers that they pose. In addition, we highlight movement behaviour features to be tracked to provide technology with information necessary for such personalisation
    corecore