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ABBREVIATIONS 

 

LBP: Low back pain 

COP: Center of pressure 

TICC: Toeplitz inverse covariance-based clustering  

MASA: Motif-aware state assignment 

PNN: Probabilistic neural networks 

PDF: Probabilistic density function 

SSA: Social spider algorithm  

BIC: Bayesian Information Criterion 

ROC curve: Receiver operating characteristic curve 

AUC: the area under the ROC curve 

E: LBP exacerbated 

NC: LBP level did not change 

IM: LBP level improved 

EMG: Electromyography 
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1. ABSTRACT 

Background: Low back pain (LBP) is a common health problem — sitting on a chair for a 

prolonged time is considered a significant risk factor. Furthermore, the level of LBP may vary at 

different times of the day. However, the role of the time-sequence property of sitting behavior in 

relation to LBP has not been considered. During the dynamic sitting, small changes, such as slight 

or big sway, have been identified. Therefore, it is possible to identify the motif consisting of such 

changes, which may be associated with the incidence, exacerbation, or improvement of LBP. 

 

Purpose: To identify motifs associated with the exacerbation of self-reported LBP by continuously 

measuring the center of pressure (COP) during sitting behavior of office workers that enables 

prediction of LBP exacerbation.  

 

Methods: Office chairs installed with pressure sensors to a total of 22 office workers (age = 43.4 

± 8.3 years) in Japan. Pressure sensor data were collected during working days and hours (from 

morning to evening). The participants were asked to answer subjective levels of pain including 

LBP. COP was calculated from the load level, the changes in COP were analyzed by applying the 

Toeplitz inverse covariance-based clustering (TICC) analysis, COP changes were categorized into 

several states. Based on the states, common motifs were identified as a recurring sitting behavior 

pattern combination of different states by motif-aware state assignment (MASA). Finally, the 

identified motif was tested as a feature to infer the changing levels of LBP within a day. Changes 

in the levels of LBP from morning to evening were categorized as exacerbated, did not change or 

improved based on the survey questions. Here, I present a novel approach based on social spider 
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algorithm (SSA) and probabilistic neural network (PNN) for the prediction of LBP. The specificity 

and sensitivity of the LBP inference were compared among ten different models, including SSA-

PNN. 

 

Result: There exists a common motif, consisting of stable sitting and slight sway. When LBP 

improved towards the evening, the frequency of motif appearance was higher than both LBP 

exacerbated (p < 0.05) and did not change. The performance of the SSA-PNN optimization was 

better than that of the other algorithms. Accuracy, precision, recall, and F1-score were 59.2%, 

72.5%, 40.9%, and 63.2%, respectively. 

 

Conclusion:  

A lower frequency of a common motif of the COP dynamic changes characterized by stable sitting 

and slight sway was found to be associated with the exacerbation of LBP in the evening. LBP 

exacerbation is predictable by AI-based analysis of COP changes during the sitting behavior of the 

office workers. 
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2. Introduction 

Low back pain (LBP) is a highly common issue1 among people of all ages2–4, and is generally 

described as pain, muscle stiffness or rigidity located below the costal margin and above the lower 

gluteal folds, with or without leg pain (sciatica)5. LBP is a common ailment that affects a large 

percentage of the population, with a lifetime incidence of 58% to 84%2,6,7. Even among adolescents, 

37% of the subjects reported experiencing LBP monthly or more frequently4. In the coming 

decades, the global burden of LBP is anticipated to rise even more8. LBP affects function, societal 

participation and personal financial well-being in various biophysical, psychological and social 

ways. LBP is the leading cause of disability in working-age people worldwide, especially in low-

and middle-income countries where informal employment is common, and job-changed options 

are limited8. As one of the most common chronic health problems, LBP causes more people to 

leave the workforce than heart disease, diabetes, hypertension, neoplasm, respiratory disease and 

asthma combined9. People who suffer from this disorder have less wealth than those who do not10 

— when comorbidities are present, this effect is amplified10. Older people who retire early because 

of LBP have approximately 87% less total wealth and income-producing assets than those who 

remain in full-time employment11.  

 

LBP could be a result of many factors. Its emergence could be attributed to several psychosocial 

and physical factors. A systematic review showed that structural changes identified by MRI, such 

as disc bulge, disc extrusion and spondylolysis were strongly associated with LBP12. However, in 

most cases, the causes of LBP could not be identified and were described as nonspecific13,14. Many 

imaging (radiography, CT scan, and MRI) findings in people with LBP were also present in people 

who did not have LBP15. Furthermore, LBP risk factors include obesity, age, smoking and 
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psychosocial factors (such as depression and stress)16,17. In addition to the above-mentioned risk 

factors, static loading in the office environment may worsen LBP18, and prolonged static sitting 

was associated with an increased risk of LBP and an increase in LBP over the last 40 years19–23. 

 

Sedentary behavior is a class of behaviors characterized by little physical activity or activities that 

require low energy consumption of less than 1.5 metabolic equivalent units24. A study on adult 

sedentary behavior found that sedentary time spent increased with age, full-time employment, and 

higher education25. A study of 27,637 people aged 15–98 years from 32 European countries showed 

that the average recorded weekday sitting period was 5.2 h/day (S.D. 184 min/day)26. Research 

conducted in Australia and the UK reported that office staffs spent 68%–70% of a workday and 

60%–63% of a non-workday27,28. Japanese office workers spent 63% of a workday and 60% of a 

non-workday sedentary29. A study of 1329 sitting workers showed that 201 (15.1%) acknowledged 

experiencing LBP during the recent week of the survey30.  

 

However, there exists conflicting evidence regarding the relationship between sedentary behavior 

and LBP.  Two systematic reviews revealed that LBP was not consistent with sedentary lifestyles. 

They have identified eight high-quality studies, including cohort studies and case-control studies. 

Except for one cohort study, none of the studies have identified a statistically significant 

association between sedentary work or sitting at work and LBP31,32. Sitting for a longer period may 

result in the development of LBP, but the incidence rate of LBP development largely varied among 

the studies ranging from 19.2%–43.6%33,34. It is believed that this variability may be due to the 

dynamic nature of LBP. Even for chronic LBP, patients do not suffer from pain all day long.   
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Researchers have attempted to identify if a subject had chronic LBP during sitting behavior using 

several techniques, including artificial intelligence (AI). AI differs from classical statistics. From 

the feature engineering stage, potential features can often be discovered by data-driven, such as 

graph models or time series decomposition. Further, the model can often discover features in 

hyperspace that are difficult to classify from low-dimensional features. Three studies compared 

electromyography (EMG) recordings from trunk muscles, spinal positions and trunk range of 

motion between chronic LBP patients and control participants by using neural network and the 

fuzzy inference system35–37, with the accuracy of classifying LBP ranged from 83% to 92%. Several 

studies have examined EMG and trunk motion data to identify chronic LBP by different machine-

learning models, with an accuracy higher than 70%38–46. Although many previous studies analyzed 

static traits during sitting47,48, it has been pointed out that the dynamic nature of LBP had not been 

considered. It was possible that chronic LBP patients were not suffering from LBP at the time of 

measurement. LBP does not persist all day long or every day — even the same individual at 

different times of the day has different levels of LBP. The majority of the LBP episodes are brief 

and have little or no consequences. Still, recurrent episodes are common, and LBP is increasingly 

recognized as a long-term condition with a variable process, not a series of unrelated events8. There 

is another problem that previous studies may suffer. LBP in daily life may differ from that identified 

at laboratory measurements where most of the studies used EMG and body movement in laboratory 

settings. Measurement and evaluation over a prolonged time of period comparable to daily life are 

almost impossible. Therefore, currently available non-invasive, unobtrusive and contactless 

methods, capable of collecting data from the sensors on the chair may be suitable for measurements 

in a “real-life” setting. 
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Another limitation in the previous studies focusing on sedentary behavior may be in the assessment 

of sitting behavior on an aggregate basis, as to determine sitting behavior as a whole. Typically, 

the evaluation was commonly determined by the total sitting time47. This conventional approach 

conceptualizes sitting activity as a person's static characteristics in a single day. Conversely, some 

studies have tried to obtain a sitting posture using pressure sensors placed under a chair, armrests 

and chair backrests49-51, merely describing the sitting posture, without providing insight into the 

nature of sitting behavior. Such approaches to characterize sitting behavior overlook the fact that 

sitting is a highly complex process. As shown in many studies that sitting behavior contains slight 

sways and big sways52-55. Interestingly, two studies reported less frequent postural shifts in 

individuals with LBP than in healthy individuals56,57, with just counting postural shifts above a 

determined threshold level of displacement. A better characterization of sitting behavior in daily 

life when most of the LBP episodes occur considering the time sequence property of sitting 

behavior may give us a better understanding of the physiological nature of LBP. Thus, we 

hypothesized that sitting behavior could be characterized by constant sequences of states derived 

from various postural changes during sitting. The term “state” refers to an interpretable template 

that can be repeated frequently. In this study, a “state” was calculated by subsequent time-series 

clustering of changes of center of pressure (COP), representing a specific action during sitting. The 

term “motif” consisted of multiple states, defined as patterns that have a similar shape, and yet 

exhibit nontrivial variability, which may be able to determine the sitting behaviors on a more 

granular basis: identifying the definition and nature of each motif, consisted of different states. 

 

There also remains an issue in the complexity of data derived from long-term human behaviors, 

namely sitting in this study. To understand these complex data, each measurement must be labeled 
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as one of the different states. These states are not present as independent events, and the sequence 

in which they occur is essential. While traditional multiple time-series repetition methods produce 

several segments of time58–61, motifs are anticipated to produce multiple cycles of data in multiple 

time steps. Thus, it is crucial to determine a motif indicating the recurrent events or a sequence of 

state changes. To this end, I began to use Toeplitz inverse covariance-based clustering (TICC)62 to 

split the sitting data into different states. Further, I defined each motif by motif-aware state 

assignment in noisy time-series data (MASA)63. MASA aims to find sequences of measurements 

that may conform to each motif. MASA differs from previous methods in two ways. First, MASA 

allows latent motifs with varying lengths and combines the same states into one component of a 

motif63, in contrast to uniform approaches that hold a constant length64. Second, MASA iterates by 

re-assigning the original measurement to the updated states using motifs, thereby allowing 

previously noisy sequences to make a correlation to match a given motif. This makes MASA even 

more robust as it allows previously noncorrelated sequences to correlate63.  

 

In the prediction step, I use a probabilistic neural network (PNN) as classifier63, which is a special 

type of radial basis function that is significantly faster than backpropagation networks66. PNN is 

based on the probability density function (PDF) and Bayesian classifier65 which could reduce the 

likelihood of misclassification67. However, there are two limitations in PNN. (1) Relative 

inaccuracy when training with a small sample size and (2) lack of evaluation of the importance of 

the input variables. Therefore, to address these limitations, this study adopts an optimized PNN 

with two parameters: one is the smoothing parameter, representing the spread of the distribution, 

and the other is the weight of the input variable which changes the shape of PDF so that the contour 

line is no longer circular but elliptical. 
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Furthermore, it is crucial to find an optimal value for the weight and smoothing parameters to 

enhance the performance of the model. Earlier, trial and error methods were commonly used to 

select the parameters; however, these methods were time-consuming. Recently, reinforcement 

learning algorithms have become one of the methods for computing parameter selection68. 

Meanwhile, this parameter estimation problem was shown to be solved by nature-based algorithms. 

With the rapid growth in the size and complexity of modern optimization problems, nature-based 

computation (e.g., genetic algorithms69, ant colony optimization70, and particle swarm 

optimization71) has gained increasing attention as an effective tool for optimization. When 

compared to traditional optimization techniques, these algorithms were shown to perform well, 

especially when solving nonconvex optimization problems72,73. As a population-based 

metaheuristic general algorithm, the social spider algorithm (SSA), a state-of-the-art nature-

inspired swarm intelligence algorithm based on social spiders, exhibited excellent global 

optimization performance on benchmark tests74. Therefore, whenever the algorithm can locate a 

relatively small region near the global optimum, SSA was found to be capable. Thus, I used SSA 

as the optimizer of PNN and inferred the change in LBP using SSA-PNN. 

 

3. Purpose 

This study aimed to determine whether the motif consisting of different states identified in the COP 

changes during sitting behaviors may affect LBP exacerbation. I optimized PNN and used SSA as 

the optimizer, so that LBP exacerbation based on the COP data collecting could be able to predict. 

Previous studies have established that sitting behaviors may exhibit particular states. Thus, I 
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hypothesized that 1) there is a common motif consisting of more than two states, and 2) the motif 

may be related to LBP. 

 

4. Method 

4.1 Study design 

This study is an observational study of office workers to identify daily exacerbation of low back 

pain occasionally experienced during their work at the office through the analysis of features in 

sitting behavior by means of time-series recording of changes in the center of pressure using load 

cells installed on office chairs. The subjective level of low back pain was checked four times daily 

at the office during the workdays by means of presenting an electronic questionnaire using a tablet 

PC. The study participants were recruited at a company and the office was located in downtown 

Tokyo, in July 2017 after the approval of the study protocol by the Ethical Committee of Tohoku 

University School of Medicine. The measurement and data collection were performed from 

October to December 2017 at the office in a restriction-free environment where the study 

participants worked according to their real assignment in the company.   

 

4.2 Participants  

In order to ensure the safety of procedures and to avoid bias on results due to serious disease, the 

following inclusion criteria were used: office workers who are between 20 and 59 years old when 

they gave their informed consent were eligible. The exclusion criteria were those who had serious 

psychiatric, neurological or musculoskeletal diseases (musculoskeletal disorders) that caused low 

back pain or neck pain, and those whose weight was 80 kg or more. 
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4.3 Smart chair 

Conventional office chairs equipped with load cells and WiFi data transfer units were provided to 

the study participants who gave full informed consent to the study protocol. The dimension of the 

conventional office chair purchased was 52 cm wide, 58.5 cm in length and 88.5 cm in height with 

a single column (Fig. 1). Four load cells were fixed on a metal plate of 260 mm wide and 250 mm 

in the front-back direction and 3.2 mm thick, in a rectangular formation of 215 mm wide and 200 

mm front-back direction so that the geometric center matches that of the metal plate. The bottom 

surface of the seat frame was firmly attached to the load cells. Each load cell had a capacity of 50 

kg driven by 5 volts (D.C.). The calibration of the “smart-chair” was performed in 3 steps to ensure 

validated output signals. Signals obtained without any weight on the seat were determined as zero 

level, followed by placing a round metal plate of either 40 kg or 80 kg at the geometric center of 

the seat. A linear relationship was confirmed within the range of up to 80 kg. The load cells were 

wired to a Rasberry Pi processor and the data was transferred through a WiFi unit at a transfer rate 

of 100 Hz, and the data was stored online at Amazon Web Server. The seat height was adjusted for 

each study participant so that both feet could stably be placed on the floor with the legs upright in 

a comfortable position without extra stretching. 

 

4.4 Assessment of sitting behavior 

In order to assess sitting behavior, spatio-temporal changes in the distribution of pressure across 

the participants’ sitting interface were monitored by the smart chair. The sitting behaviors of office 

employees, such as leaning in various directions, leaving the chair and swaying can be adequately 

represented by COP. Therefore, we used COP to identify the sitting behavior, calculated as the Eq. 

1: 
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COP(𝑥, 𝑦) =
𝐴1(−1,1)+𝐴2(−1,−1)+𝐴3(1,1)+𝐴4(1,−1)

4
 (1), 

here, the A1 (Front-Left), A2 (Back-Left), A3 (Front-right) and A4 (Back-Right) indicate the 

values from the sensors. Since this study aimed to identify the motif of sitting behavior instead of 

the details of physical activities, therefore data were downsampled to 1 Hz, i.e., I cut the sampling 

rate based on the first timestamp to 1 sample per second. 

 

4.5 Assessment of subjective symptoms 

This study focused on changes in the subjective levels of LBP localized below the costal margin 

and above the inferior gluteal folds, neck pain, satiety and sleepiness. All the subjective levels were 

determined using a modified Likert scale of 0 to 10 where 0 represented no pain, hungry, or not 

sleepy and 10 represented the worst pain, full or sleepy. The questionnaire was automatically 

delivered at regular times every day (9:00, 11:30, 14:00, 17:00) on a tablet PC provided in this 

study for each participant. Whenever the participants arrived at the office after 9:00, they were 

asked to answer the questionnaire whenever they started working. Whenever they had to stay in 

the office after 17:00, they were asked to answer the questionnaire before they left the office. The 

change in the level of LBP was defined by subtracting the end-of-day score from the morning score. 

A negative value indicated LBP exacerbated, 0 indicated no change, and a positive value indicated 

improvement of LBP. The levels of other subjective symptoms were also assessed in a similar 

manner. 

 

4.6 Relevant features 

Thus, in this study, sex, sitting time, motif occurrence number, level of sleepiness and satiety after 

breakfast were selected to classify changes in LBP. These features were shown to be sensitive to 
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shifts in LBP. Previous studies have identified that gender75, the degree of sleepiness76-78, and how 

full breakfast79 may potentially affect the level of LBP of the participants. 

 

 

4.7 Data analyses 

In the aforementioned time-series, TICC performs simultaneous segmentation and clustering on 

the siting behavior data, the motifs were discovered by MASA, and prediction by SSA-PNN (Fig. 

2). The broad collection of time-series data can be represented by a small number of sitting 

behaviors after these motifs are recognized. 

 

4.7.1 Clustering by TICC 

TICC is a model-based subsequence clustering technique for multivariate time series to discover 

recurring patterns in temporal data. It assumes that each state (cluster) has a multilayer correlation 

network, or a Markov random field (MRF) that contains both intra-layer and inter-layer edges, 

which is specified for each cluster. MRF is a probability distribution model which emphasizes the 

correlation instead of the distance. Therefore, TICC is not affected by the sitting position. In this 

study, the states are described as the interrelationships between observations of COP, which can 

find accurate and interpretable structures of sitting behaviors without the constraint of temporal 

consistency.  

 

As defined by TICC, the time series of T sequential observations,  

𝑥orig = [
∣ ∣ ∣ ∣
𝑥1 𝑥2 𝑥3 … 𝑥𝑇
∣ ∣ ∣ ∣

], 
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 where xi ∈ Rn is the multivariate i-th observation. The objective is to cluster these T observations 

into K clusters. TICC focuses on the clustering of a short size series w ≪T which ends at t. The 

xt−w+1,...,xt observations are built into an nw-dimensional vector Xt . Therefore, a new sequence from 

X1 to Xt is created, which is a helpful medium for each T observations to provide proper context. 

The TICC approach therefore does not cluster the observations directly, but clusters these 

subsequences with Xt,...,Xt. Specifically, TICC constrains the Θi’ s, the inverse covariances, to be 

block Toeplitz. Thus, each nw × nw matrix can be expressed in the following form, 

Θ𝑖 =

[
 
 
 
 
 
 
 𝐴

(0) (𝐴(1))
𝑇

(𝐴(2))
𝑇

⋯ ⋯ (𝐴(𝑤−1))
𝑇

𝐴(1) 𝐴(0) (𝐴(1))
𝑇

⋱ ⋮

𝐴(2) 𝐴(1) ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ (𝐴(1))
𝑇

(𝐴(2))
𝑇

⋮ ⋱ 𝐴(1) 𝐴(0) (𝐴(1))
𝑇

𝐴(𝑤−1) ⋯ ⋯ 𝐴(2) 𝐴(1) 𝐴(0) ]
 
 
 
 
 
 
 

 , 

where A(0), A(1),  …, A(w-1) ∈ Rn×n. A(0) sub-block indicates the intra-time partial interdependencies, 

so that Aij
(0) defines the interrelationship between concurrent values of sensor i and sensor j (e.g., 

the change of COP in two directions). TICC’s purpose is to solve the K inverse covariances Θ = 

{Θ1,..., ΘK}and to get the corresponding point assignment sets P = {P1,...,PK} (Pi ⊂ {1,2,...,T}), 

this leads to an optimization problem in which the following function is to be minimized, as eq. 2: 

arg𝑚𝑖𝑛
Θ∈𝒯,𝐏

∑  𝐾
𝑖=1 [∥∥𝜆 ∘ Θ𝑖∥∥1

⏞      
sparsity 

+∑  𝑋𝑡∈𝑃𝑖 (−ℓℓ(𝑋𝑡 , Θ𝑖)
⏞      
log  likelihood 

+ 𝛽𝟙{𝑋𝑡−1 ∉ 𝑃𝑖}⏞        
temporal consistency 

)] (2), 

here, 𝒯 is the set of symmetric block Toeplitz nw × nw matrices and ∥∥𝜆 ∘ Θ𝑖∥∥1 is an ℓ1-norm penalty 

of the Hadamard (elementwise) product to incentivize a sparse inverse covariance (where λ ∈ 

Rnw×nw is a regularization parameter). Additionally, ℓℓ(𝑋𝑡 , Θ𝑖) is the log-likelihood that Xt came 

from cluster i, β is a parameter that enforces temporal consistency, and 𝕝{𝑋𝑡−1 ∉ 𝑃𝑖}is an indicator 
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function checking whether neighboring points are assigned to the same cluster. The TICC problem 

is solved through alternating minimization, using a variation of the EM algorithm. 

 

4.7.2 Discovering motif by MASA  

In noisy time-series results, MASA is used for discovering common motifs and leveraging those 

motifs to assign states to measurements more robustly. It aims to (1) discover motifs in time-series 

data that recognize important recurring and length-varying trends and (2) assume that these trends 

require consecutive measures of time. MASA defines a motif as a sequence of corresponding state 

assignments and provides a sequence of consecutive measurements, where all neighboring 

occurrences of the same state are combined into one (MASA defines a time-varying hidden Markov 

model (HMM) to model the entire sequence of measurements X). Therefore, states are ordered in 

the motif, however the number of consecutive occurrences of each state can differ between motif 

instances. To this end, each motif is represented by a pair (m,q), where m is the motif, and q is a 

related list of instances of the motif. In the dataset, a motif instance implies the occurrence of the 

motif. In this system, I implement the following motif constraints: 

(1) The m motif must contain at least three states: |m| > 2. 

(2) At least L times must appear for a motif m: |q| > L. 

(3) Motif instances do not overlap at most one motif can only belong to each 

measurement. 

As motifs with two or fewer states are not very insightful outside the clustering, MASA encourages 

the first restriction. The runtime is supported by the second constraint – I can save time by exploring 

motifs that are more frequent. Because I am only interested in frequent patterns, I do not need a 

motif for every measurement. 
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Since the states of sitting may occur in a particular sequence (like a motif), MASA is sufficient to 

obtain the motif from states of sitting behaviors. MASA seeks to solve for Θ (In this method, state 

model defined using TICC model), S and M, by optimizing the following objective (subject to the 

above constraints) as Eq. 3: 

maxΘ,𝑆,M  ∑𝑖=1
𝑇  (log 𝑃Θ(𝑋𝑖 ∣ 𝑆𝑖) − 𝛽𝟙{𝑆𝑖−1 ≠ 𝑆𝑖} + log 𝛾𝟙{𝑆𝑖 ∉ 𝐌}) + Ψ(𝐌) − 𝑅(Θ) (3), 

here, Xi is the measurement at time i, which has the assigned state Si, and MASA defines the 

probability PΘ (Xi| Si). The β term is a hyper-parameter that encourages neighboring measurements 

to be assigned to the same state. The γ parameter, 0 ≤ γ ≤ 1, defines the cost of not assigning a 

measurement to a motif instance. Lower γ values indicate a harsher penalty for a measurement that 

does not conform to any motif. The term Ψ refers to a scoring metric that measures the strength of 

this motif based on how often they appear in the dataset. R(Θ) is a regularization penalty on the 

state model parameters Θ, which formulated the problem of motif discovery as a major 

optimization problem and solved by using an expectation-maximization approach. 

 

Considering the interpretability of results, the time to maintain the state, I set the window size to 5 

s (five samples). Refer to the paper about the TICC and MASA62,63, as an empirical criterion for 

assessing the optimization model and the relevant clustering outcomes, I used the Bayesian 

Information Criteria (BIC). Finally, I used strict rules to obtain the states, the number of clusters K 

was 4, the penalty factor β was selected as 50, and the regularization parameter λ was selected as 

0.001. 
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4.7.3 Prediction by SSA-PNN 

I proposed an optimized PNN. First, a set of random real numbers is generated for the weights and 

smoothing parameters from SSA74. Second, data were split into six sets — five sets were used as 

training datasets for training the model, and one set of the test dataset was used to evaluate the 

accuracy and classification effectiveness of the model. In the training set, I further used four 

datasets for training and one for validation of the five datasets. This process fits five models on 

different but partially overlapping training sets and applies a set of parameters generated by SSA 

to these five models simultaneously. Subsequently, it evaluates them on the non-overlapping 

validation set and uses the cross-entropy from the validation set as loss functions. Compared to a 

straightforward training/test split, the main benefit of this approach is the built-in cross-validation 

to obtain parameters with more generalization power capability, and thus, less bias at smaller 

sample sizes. However, the disadvantage is that it can significantly increase the training time of the 

model. Finally, SSA obtains the optimal tuning parameter values that can be applied to a fully 

independent test set to assess the model in an unbiased manner. In addition, if the smoothing 

parameter of PNN is lower than 0.1, overfitting becomes likely.  

 

Therefore, I use the social spider algorithm as an optimizer74 to search the smoothing parameters 

and weights in a modified PNN and tune PNN automatically, demonstrating the applicability of a 

PNN-based model for decision-making in the classification process. I sought to solve for ω and σ 

by optimizing the following objective subject, as shown in Eq. 4: 

𝜔𝑖
∗, 𝜎∗ = arg𝑚𝑖𝑛

1

𝐾
∑  𝐾
𝑘=1 𝐿𝑘 (4), 

where ωi represents the i-th input variable weight, σ is the standard deviation of the Gaussian 

function that is equivalent to the smoothing parameter in PNN, K is the number of folds in the 
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training set, and Lk represents the loss function of the k-th fold. Cross-entropy is a better measure 

than MSE for classification, as the decision boundary in a classification task is substantial (in 

comparison with regression); therefore, I used categorical cross-entropy as the cost function, as 

shown in Eq. 5: 

 

𝐿 =
1

𝑁
∑  𝑖 −∑  𝑀

𝑔=1 𝑦𝑖𝑔log (𝑝𝑖𝑔(𝑥𝑖 ∣ 𝑐𝑔))(5), 

where x represents the test data vectors; yig represents the indicator variable (0 or 1); if the category 

is the same as the category of sample i, it is 1; otherwise it is 0. M is the number of clusters. The 

general classification problem is to determine the category membership of a multivariate sample 

data (i.e., a p-dimensional random vector x) into one of g possible groups Cg, based on a set of 

measurements. Generally, the probabilistic density function is a normal probabilistic density 

function, as shown in Eq. 6: 

𝑝𝑖𝑔(𝑥𝑖 ∣ 𝑐𝑔) =
1

(2𝜋)𝑛/2𝜎𝑛
exp (−

(𝑥𝑗−𝑥𝑖𝑗
(𝑔)
)
2

2𝜎2
) (6), 

Eq. 5 shows that the only manipulating parameter is the smoothing parameter. In this study, for the 

smoothing parameter and multiple weights, and as I tested, if σ is smaller than 0.1, the training set 

overfits, then Eq. 5 is developed into Eq. 7: 

𝑝𝑖𝑔(𝑥𝑖 ∣ 𝑐𝑔) =
1

(2𝜋)𝑛/2𝜎𝑛
⋅
1

𝑙𝑔
⋅ ∑  

𝑙𝑔
𝑖=1 exp (−∑  𝑛

𝑗=1

(𝜔𝑗𝑥𝑗−𝜔𝑗𝑥𝑖𝑗
(𝑔)
)
2

2𝜎2
)(7), 

where n is the dimension of the input data, that is, the number of attributes, where xj represents the 

value of the j-th input variable in the testing sample, and xij 
(g) represents the j-th input variable of 

the i-th sample of Category g in the sample base. Notably, determining the class number of new 

input data is based on the results of the Parzen window. Parzen window is the average probability 

of input data xj related to all training samples in each class x (g)
 ij for n attributes. lg is the number of 
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training probability of input data xj related to all training samples in each class xij for n attributes 

samples that belong to class g. Finally, the fourth layer determines the class of unknown input data 

that regard to the highest pig (xi | cg). 

 

Furthermore, nine commonly used models (Ridge Regression, Linear Discriminant Analysis, 

Logistic Regression, Support Vector Machine, K Nearest Neighbors, Extreme Gradient Boosting, 

Adaptive Boosting, Random Forest, Gradient Boosting) were trained to compare the performance. 

Because of the small sample size, after tuning the hyperparameter, I set fixed hyperparameters for 

each model (supplementary materials, list 1) and repeat stratified 6-fold  cross-validation 200 times. 

 

4.8 Statistical analyses 

The occurrence rate of the common motif in three LBP change conditions was checked for normal 

distribution and homogeneity of variance. A non-parametric method for comparing two or more 

independent samples (Kruskal-Wallis test) was done. When significant differences were detected, 

the post-hoc comparisons (Dunn’s test) were performed. The level of significance was determined 

as p-value < 0.05. 

 

In this paper, all the preprocessing, feature engineering, analysis and visualization were 

implemented in Python 3.7.1. 

 

5. Results 

I excluded participants who did not fill in the questionnaire (n=2) and sit on the chair for less than 

20 min (n=6). After these exclusions, there were 22 participants in total, and the participants’ 
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demographic profile is presented in Table 1. The total number of days recorded was 90. Each 

participant provided records for 4.1 days on average. I classified participants into four categories 

according to the changes in the levels of LBP in the recorded days. Three subjects (13.6 %) 

experienced an exacerbation of LBP in all the recorded days, eight participants experienced no 

change in the level of LBP, six participants experienced both the exacerbation of LBP, and no 

change, five participants experienced the exacerbation, no change and improvement of LBP in the 

recorded days, as shown in Table 2. Furthermore, Table 3 shows the changes in LBP for all samples, 

revealing that when LBP exacerbated, sitting time was longer than other groups. There was a clear 

trend of increasing the common motif from LBP. For both levels of sleepiness and fullness after 

breakfast, the no change group exhibited the highest score. 

 

The results obtained from the preliminary analysis of BIC are shown in Table 4, which the penalty 

factor β was 50, and the regularization parameter λ was 0.001. To reiterate, previous research 

showed that there are more than three states from sitting behavior; thus, I set K from 4 to 10. I can 

infer 4 with the smallest BIC value, indicates the best number of states. Therefore, in this study, 

the states of sitting behavior of the office workers were determined to be 4. Otherwise, it may 

undermine sensitivity and physiological interpretability.  

 

The states of COP are used to reflect the specific pattern from sitting behavior, such as leaving the 

chair, stable sitting, slight sway and big sway (Fig. 3). Although the states vary slightly among 

state 1, state 2 and state 3, showing the characteristics of different states of sitting behavior. State 

1 indicates stable sitting behavior. State 2 implies slight sway; in general, it was similar to many 

small actions, such as small stretch or rotation. State 3 indicates big sway. In state 3, the subjects 

moved significantly in both directions. State 4 indicates the participant left the chair. Furthermore, 
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as Fig. 3 shows, the common motif consists of state 1 (stable sitting) and state 2 (slight sway), I 

found that 91.1% (82/90) of days had this motif. This indicates a series of complex actions that 

have a specific sequence.  

 

The sitting behavior data were labeled as four states, and a common motif consists of two states. 

Subsequently, I used the occurrence number of the motif, sitting time, and other features such as 

gender, sleepy degree and how full breakfast was inferring to the change of LBP from the morning 

to night. The output class of the confusion matrix represents the prediction of the PNN-SSA model, 

enabling it to quickly distinguish confusion between different classes of changes in LBP (Fig. 4). 

In this study, the normalized confusion matrix and confusion matrix were used to achieve a more 

visual representation. Each matrix column indicates the predicted label at an inference level of 

LBP, and each row indicates the actual class. The values of the diagonal elements represent the 

proportions of correct inference levels. Fig. 4(a) shows the number of predictions that are correct, 

LBP has the highest probability of misclassification. Fig. 4(b) shows the accuracy of SSA-PNN at 

three levels. SSA-PNN yielded average accuracies of 65%, 81%, and 14% for worse, no change 

and better respectively. The performance of predicting LBP level improved was not as good as the 

other two conditions. This might be attributed that I defined the change of LBP by using the 

morning score of LBP minus the night score, and most of the scores were very close to 0 which 

indicates LBP level did not change, physical conditions of no change and got better are similar 

were surmised. Therefore, the accuracy of LBP level improved has declined. 

 

The ROC curve was constructed to test the quality of the model as a prediction tool. I used the area 

under the ROC curve (AUC) which was calculated based on all possible cutoff values to evaluate 

the inference performance of SSA-PNN. Fig. 5 depicts that SSA-PNN had an acceptable ability to 
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infer LBP. The macro-average AUC was 0.77, AUC in LBP exacerbated, no change and improved 

were 0.72, 0.67 and 0.90, respectively. 

 

The results of the performance of the proposed algorithms show a more detailed interpretation, 

which was evaluated by mean accuracy, weighted precision, weighted recall, and weighted F1 

score, as shown in Table 5. Based on data, cross-validation was performed by applying the 6-fold 

cross-validation model 200 times. In essence, the SSA-PNN and Extreme Gradient Boosting 

yielded better overall performance on most optimization problems than other algorithms. However, 

the other methods exhibited very poor classification rates. For this small dataset, SSA-PNN had 

high levels of classification performance. However, Support Vector Machine had the best recall 

results compared with the other algorithms (44.3 %). In general, SSA-PNN exhibits the best 

adaptability for small datasets. 

 

Fig. 6 shows the performance of SSA with 10 epochs. It was used as the validation set to obtain σ 

and ω. In this figure, the smaller the value of the performance, the better performance of the neural 

network. There was a sufficient gain in performance until the 2nd epoch. 

 

Fig. 7 presents the results obtained from the preliminary analysis of sitting behavior. The data did 

not follow a normal distribution, and the variance was not homogeneous. Significant differences 

were observed between the three groups (p = 0.027; Kruskal-Wallis test), the occurrence rate of 

the common motif identified in the condition of LBP level improved was higher compared with 

exacerbated (p = 0.019; Dunn’s test) and did not change. 
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6. Discussion 

This study used cross-validation in a new way. In contrast to evaluating the model performance, 

this study used five folds to evaluate the generalization of parameters and fixed each set of 

parameters obtained from SSA to find a set of smoothing and weighting parameters with the best 

generalization performance on the k sub-dataset. Therefore, the parameter had the best 

generalization in the five folders. Thus, we used this model to predict the exacerbation of LBP 

during sitting behavior in real life.  

 

Although no previous studies have examined the motif in sitting behavior, many previous studies 

have examined the association of sitting behavior with LBP. Recently, ideal workplace sitting 

posture and sitting behavior have been widely discussed in the literature. The long-standing 

doctrine of an optimal seating posture that is “as upright as possible” has been highly disputed. The 

principle of “dynamic sitting” has been slowly substituted, where sitting postures were identified 

to continuously change80,81. However, O’Sullivan in his systematic review concluded that dynamic 

sitting approaches are not effective as a stand-alone management approach for LBP48. This 

conclusion could have been generated by ignoring the potential nature that some individuals have 

more dynamic sitting behavior (like motif), whereas others have less. 

 

The current study is the first to report the motif of sitting behaviors, which consists of stable sitting 

and slight sway — it is not a type of sitting posture but a dynamic sitting behavior that may alleviate 

LBP. Perhaps the most critical finding is that this motif has a positive effect on LBP. These results 

are consistent with the ideas presented in some review articles of LBP80,81. The suggestions 

recommended that a healthy sitting posture are (1) the best thought of as an active, not a static 
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phenomenon, regularly interspersed with moving, (2) the optimal sitting posture, and (3) it helps 

with lumbar postural health and LBP prevention. In addition, studies have reported less frequent 

postural shifts in individuals with chronic LBP than in healthy individuals49,50. Notably, this result 

may be explained by the shift of stable sitting and slight sway, similar to a movement in the 

different parts of the trunk muscles, which may alleviate LBP81. These results corroborate the 

findings of a previous in which prolonged static contractions of trunk muscles could lead to an 

increased risk of injury82.  

 

In contrast, postural modification has been shown to increase the saturation of subcutaneous 

oxygen, which positively affects tissue viability83. Therefore, combined with stable sitting and 

slight sway, this motif may alleviate LBP. After an in-depth analysis, we found that the motif is 

always less than 3 min, which is like a fundamental unit. It can be extended as a longer motif with 

the same component and sequence. However, the mechanism by which sitting behavior exhibits 

this motif was still now known, and I speculate that in unconscious states, the nervous system may 

be controlling the trunk during sitting behavior for self-protection. 

 

As aforementioned, the motif consists of stable sitting and slight sway that positively affects LBP. 

These results correlate with a previous study showing that the range of COP displacement in both 

directions and lumbar curvature were positively correlated with LBP55. First, sitting compresses 

the intervertebral disc, creating hydrostatic pressure in the nucleus by the annulus and adjoining 

vertebral bodies84. The amount of hydrostatic pressure within the nucleus is affected by the number 

of sits84. Therefore, stable sitting and slight sway may be adjusting such pressure in the 

intervertebral disc. Second, it may be argued that comfortable sitting will preserve lumbar lordosis 

and transfer the forces acting on the lumbar vertebrae from the intervertebral discs to the lower 
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margins of the articular surfaces of the zygapophysial joints, minimizing the effect of creeping 

intervertebral discs57. Third, slight sway shifts a portion of the body weight, thereby reducing the 

load of back muscles54. Following the present results, previous studies have demonstrated that 

relative to the upper and lower thoracic areas, the non-pain participants displayed a less lateral bent 

positional shift in the mid-thoracic region. The participants developed transient pain that showed 

higher muscle activations in the abdominal muscles. In addition, poor to moderate positive 

associations between rated pain and low back muscle activation were found35. However, with small 

sample size, caution must be applied, as the findings are subject to the selection bias. Thus, it may 

be inferred that during working hours, stable sitting and slight sway may positively affect LBP. 

 

I also identified two states and many motifs from the sitting behavior. For the other two states, one 

was absent from the chair; the subjects might have left the chair for lunch or for meetings at a 

different place. The other state indicates a big sway, which is not the component of the common 

motif. However, it may indirectly confirm the association between sitting behavior and LBP. 

Previous research showed that all participants experienced the highest discomfort in the relaxed 

slouching sitting posture, which is similar to a big sway85. As I mentioned, the increase in the 

degree of variability in the sitting posture is interrelated with the increase in perceived discomfort55. 

Notably, this effect may be clarified because those who developed pain had larger L1/L2 

intervertebral angles, larger pelvic incidences, and sacral slpoes86. In contrast, the flexion-

relaxation phenomenon in the relaxed slouching sitting posture caused the bodyweight to produce 

mechanical loading on passive tissues87. Furthermore, many motifs consisted of two or more states. 

Most of these motifs are not as common as the motif I proposed, and I speculate that these motifs 

highly depend on each individual's characteristic or personality, and there are still several motifs 

that may reflect LBP. Therefore, it seems that further research can perform clustering based on 
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motifs caused by individual differences to identify a tighter relationship between LBP and such 

sitting behavior. 

 

Despite these promising results, the questions remained. First, this sample of subjects was likely 

not large enough to represent the population's vast heterogeneity; caution must be applied, as the 

findings might not be applicable to the entire population. However, application of the same method, 

it is possible to collect more data and improve the model performance. Second, it is better to use a 

generative model for data derived small sample size. For the big data set, discriminate and 

ensemble models may also have good performance.  

 

7. Conclusion 

This study proposed a method of predicting LBP exacerbation of office workers in a “real world” 

office environment, LBP exacerbation is predictable through motif identification in center of 

pressure time series recorded during dynamic sitting. I split the time-series data of COP changes 

into four states and used MASA to find out the common motif consisting of stable sitting and slight 

sway, which positively affect LBP. I used the motif as one of the features to determine the changes 

in LBP by SSA-PNN, which had better performance compared with the other nine commonly used 

algorithms. The contribution of this study is to confirm the nature of sitting behavior, which has 

significant implications for understanding LBP and sitting behavior. Further studies are required 

to validate the effect of this motif on LBP; large randomized controlled trials could provide more 

definitive evidence. 
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9. Figures 

 
Fig. 1. Set-up for the sitting behavior measurements. Participants seated on the chair with 4 

pressure sensors and were asked to work as usual, data was collected using the same office chair 

during working.  
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Fig. 2 The framework of the data analysis.  
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Fig. 3. The common motif. This study used MASA to extract the most common motif from 

sitting behavior. LR: the change of COP in left and right; FB: the change of COP in forward and 

backward; MLR: the change of COP in left and right during the motif; MFB: the change of COP 

in forward and backward during the motif  
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Fig. 4. The confusion matrix of SSA-PNN. (a): the confusion matrix of LBP prediction.  (b): the 

normalized confusion. The plots revealed the performance of identifying various levels of LBP. 

Among them, “Did not change” had a better result.  
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Fig. 5. ROC curves of SSA-PNN. AUC for each ROC curve is provided in the parentheses. The 

prediction of LBP level improved achieved a better performance (ROC area: 0.90) as compared 

to the others.  
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Fig. 6. Validation error of SSA-PNN. The plot shows the experimental results of the 

validation set with 10 epochs. The best validation performance was attained at epoch 2. 
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Fig. 7. Differences in occurrence rate of motif at three LBP conditions. The occurrence rate was 
higher in the improved group compared to the other two groups. *p < 0.05.  



43/48 

 
 

10. Tables 

Table 1. Demographic characteristics 

 

aThe common motif identified in this study. bIn recorded days, how many 

subjects LBP exacerbated. cIn recorded days, how many subjects LBP level did 

not change. dIn recorded days, how many subjects LBP level improved. 
eIn recorded days, how many subjects LBP exacerbated and improved.  
fIn recorded days, how many subjects, LBP exacerbated, did not change.  
gIn recorded days, how many subjects LBP exacerbated, did not change and 

improved. 

E: LBP exacerbated 

NC: LBP level did not change 

IM: LBP level improved 

  

  

Subject (n) 22 

Total sample size, days 90 

Sample size (each subject), days 4.1 ± 3.6 

Gender (male), % 50.0 

Age, year 43.4 ± 8.4 

Weight, kg 65.1 ± 10.0 

Sitting, hour 5.6 ± 1.9 

Motifa, frequency/30min 2.0 ± 1.7 

Level of sleepiness (score from 0-10) 6.6 ± 2.0 

Level of fullness after breakfast (score from 0-10) 4.3 ± 3.6 

Eb, n of subjects, % 13.6 

NCc, n of subjects, % 36.6 

IMd, n of subjects, % 

Mixed up different change 

0 

50.0 

E and IMe, n of subjects, % 0% 

E and NCf, n of subjects, % 27.3 

E and NC and IMg, n of subjects, % 22.7 



44/48 

Table 2. Characteristics by the change of LBP in each subject 

 E 

(n = 3) 

NC 

(n = 8) 

E and NC 

(n = 6) 

E, NC and IM 

(n = 5) 

Sitting, hour 5.7 ± 1.6 4.9 ± 1.8 6.6 ± 1.7 5.0 ± 1.8 

Motif, times/30 min 1.6 ± 0.3 2.1 ± 1.7 1.6 ± 1.3 2.4 ± 2.1 

Sleepy (score from 0-10) 6.7 ± 2.4 7.8 ± 2.0 5.8 ± 1.6 6.3 ± 1.6 

Breakfast (score from 0-10) 8.7 ± 0.5 6.7 ± 3.1 2.3 ± 3.3 3.8 ± 2.9 

E: LBP exacerbated 

NC: LBP level did not change 

IM: LBP level improved 
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Table 3. Characteristics by the change of LBP in each day from all subjects 

 E 

(n of event = 40)a 

NC 

(n of event = 43)b 

IM 

(n of event = 7)c 

Sitting, hour 6.2 ± 1.8 5.1 ± 1.8 5.1 ± 2.4 

Motif, frequency/30 min 1.6 ± 1.3 2.1 ± 1.9 3.7 ± 1.6 

Sleepiness (score from 0-10) 6.2 ± 1.6 6.9 ± 2.2 6.3 ± 1.5 

Fullness (score from 0-10) 3.5 ± 3.6 5.4 ± 3.5 2.1 ± 2.0 
aIn all the 22 subjects, there were 40 days that their LBP exacerbated. 
bIn all the 22 subjects, there were 43 days that their LBP level did not change. 
cIn all the 22 subjects, there were 7 days that their LBP level improved.  

E: LBP exacerbated 

NC: LBP level did not change 

IM: LBP level improved 
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Table 4. The BIC values corresponding to each K values (window size = 5, β = 50, λ = 0.001) 

K 4 5 6 7 8 9 10 

BIC for states (×105) 12.3 12.7 13.6 13.2  13.3 12.8 12.7 

BIC for motifs (×105) 5.5 8.3 8.1 7.9 8.9 8.4 8.7 

BIC: Bayesian Information Criterion 
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Table 5. Classification performance comparison 

Model Accuracy (%) Recall (%) Precision (%) F1 (%) 

SSA-PNN 59.1 41.3 77.6 63.0 

Extreme Gradient Boosting 58.3 43.7 61.6 60.1 

Gradient Boosting Classifier 57.7 44.0 58.6 59.1 

K Neighbors Classifier 57.4 43.0 54.5 60.0 

Random Forest Classifier 57.0 43.4 51.6 59.3 

Ada Boost Classifier 57.0 42.3 55.6 59.6 

Ridge Classifier 56.7 39.7 69.0 59.2 

SVM – Linear Kernel 56.5 44.3 52.0 57.9 

Linear Discriminant Analysis 56.2 41.3 50.0 58.5 

Logistic Regression 55.4 43.4 52.4 56.7 

A comparison of the predictive performance of my model with other 9 commonly used models 

with 6-fold cross-validation 200 times. 
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