61,301 research outputs found

    The social brain: allowing humans to boldly go where no other species has been

    Get PDF
    The biological basis of complex human social interaction and communication has been illuminated through a coming together of various methods and disciplines. Among these are comparative studies of other species, studies of disorders of social cognition and developmental psychology. The use of neuroimaging and computational models has given weight to speculations about the evolution of social behaviour and culture in human societies. We highlight some networks of the social brain relevant to two-person interactions and consider the social signals between interacting partners that activate these networks.Wemake a case for distinguishing between signals that automatically trigger interaction and cooperation and ostensive signals that are used deliberately.We suggest that this ostensive signalling is needed for ‘closing the loop’ in two-person interactions, where the partners each know that they have the intention to communicate. The use of deliberate social signals can serve to increase reputation and trust and facilitates teaching. This is likely to be a critical factor in the steep cultural ascent ofmankind

    Brain rhythms of pain

    Get PDF
    Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain

    Orthostatic-induced Hypotension Attenuates Cold Pressor Pain Perception

    Full text link
    In recent years, numerous studies have established a connection between blood pressure and nocioception. While this connection is well documented in the literature, its underlying physiological mechanisms have yet to be elucidated. Much attention has focused on the relationship between cardiovascular regulatory centers and nocioception, yet the intricacies of this relationship have not been fully explored. Therefore, the purpose of this investigation was to examine the role of the baroreflex system as a modulator of pain perception. Twenty normotensive males participated in two laboratory sessions. Time to cold pain threshold and pain tolerance was measured at rest during the first visit. On visit two, blood pressure was orthostatically manipulated via tilt table at postures 90o, 120o, and 180o. Orthostatic manipulation significantly lowered systolic blood pressure (SBP), pain threshold, and pain tolerance from seated baseline at 120o and 180o. The regression models for baroreceptor reflex sensitivity (BRS) assessed during seated baseline and at 120o and 180o revealed a significant negative beta weight for the effect of SBP. A significant negative beta weight for the effects of BRS, SBP, and their interaction was observed at 90o. In conclusion, orthostatic baroreceptor activation appears to exert an inhibitory effect on the brain that decreases pain sensitivity

    Annotated Bibliography: Anticipation

    Get PDF

    On the primacy and irreducible nature of first-person versus third-person information

    Get PDF
    In\ua0this\ua0essay,\ua0we\ua0will\ua0support\ua0the\ua0claim\ua0that\ua0at\ua0the\ua0current\ua0level\ua0of\ua0scientific advancement\ua0a)\ua0some\ua0first-person\ua0accounts\ua0cannot\ua0be\ua0reduced\ua0to\ua0their third-person\ua0neural\ua0and\ua0psychophysiological\ua0correlates\ua0and\ua0b)\ua0that\ua0these first-person\ua0accounts\ua0are\ua0the\ua0only\ua0information\ua0to\ua0reckon\ua0when\ua0it\ua0is\ua0necessary\ua0to analyse\ua0qualia\ua0contents. Consequently,\ua0for\ua0many\ua0phenomena,\ua0first-person\ua0accounts\ua0are\ua0the\ua0only\ua0reliable source\ua0of\ua0information\ua0available\ua0and\ua0the\ua0knowledge\ua0of\ua0their\ua0neural\ua0and psychophysical\ua0correlates\ua0don\u2019t\ua0offer\ua0any\ua0additional\ua0information\ua0about\ua0them

    Neural Correlates of Opponent Processes for Financial Gains and Losses

    Get PDF
    Objective: Functional imaging studies offer alternative explanations for the neural correlates of monetary gain and loss related brain activity, and their opponents, omission of gains and losses. One possible explanation based on the psychology of opponent process theory suggests that successful avoidance of an aversive outcome is itself rewarding, and hence activates brain regions involved in reward processing. In order to test this hypothesis, we compared brain activation for successful avoidance of losses and receipt of monetary gains. Additionally, the brain regions involved in processing of frustrative neutral outcomes and actual losses were compared in order to test whether these two representations are coded in common or distinct brain regions. Methods: Using a 3 Tesla functional magnetic resonance imaging machine, fifteen healthy volunteers between the ages 22 to 28 were scanned for blood oxygen level dependent signal changes while they were performing a probabilistic learning task, wherein each trial a participant chose one of the two available options in order to win or avoid losing money. Results: The results confirmed, previous findings showing that medial frontal cortex and ventral striatum show significant activation (p<0.001) not only for monetary gains but also for successful avoidance of losses. A similar activation pattern was also observed for monetary losses and avoidance of gains in the medial frontal cortex, and posterior cingulate cortex, however, there was increased activation in amygdala specific to monetary losses (p<0.001). Further, subtraction analysis showed that regardless of the type of loss (i.e., frustrative neutral outcomes) posterior insula showed increased activation. Conclusion: This study provides evidence for a significant overlap not only between gains and losses, but also between their opponents. The results suggested that the overlapping activity pattern in the medial frontal cortex could be explained by a more abstract function of medial frontal cortex, such as outcome evaluation or performance monitoring, which possibly does not differentiate between winning and losing monetary outcomes.Peer reviewedFinal Published versio

    Predictability modulates the affective and sensory-discriminative neural processing of pain

    Get PDF
    Knowing what is going to happen next, that is, the capacity to predict upcoming events, modulates the extent to which aversive stimuli induce stress and anxiety. We explored this issue by manipulating the temporal predictability of aversive events by means of a visual cue, which was either correlated or uncorrelated with pain stimuli (electric shocks). Subjects reported lower levels of anxiety, negative valence and pain intensity when shocks were predictable. In addition to attenuate focus on danger, predictability allows for correct temporal estimation of, and selective attention to, the sensory input. With functional magnetic resonance imaging, we found that predictability was related to enhanced activity in relevant sensory-discriminative processing areas, such as the primary and secondary sensory cortex and posterior insula. In contrast, the unpredictable more aversive context was correlated to brain activity in the anterior insula and the orbitofrontal cortex, areas associated with affective pain processing. This context also prompted increased activity in the posterior parietal cortex and lateral prefrontal cortex that we attribute to enhanced alertness and sustained attention during unpredictability. (c) 2006 Elsevier Inc. All rights reserved.This study was supported by grants from The Swedish Research Council (2003-5810), The family Hedlund Foundation and Karolinska Institutet. The project was finished in the context of Stockholm Brain Institute.info:eu-repo/semantics/publishedVersio

    Linking pain and the body: neural correlates of visually induced analgesia

    Get PDF
    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this “visually induced analgesia” using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called “pain matrix”), and (2) an extensive set of posterior brain areas activated by the visual perception of the body (“visual body network”). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain
    • 

    corecore