372 research outputs found

    PageRank algorithm for Directed Hypergraph

    Full text link
    During the last two decades, we easilly see that the World Wide Web's link structure is modeled as the directed graph. In this paper, we will model the World Wide Web's link structure as the directed hypergraph. Moreover, we will develop the PageRank algorithm for this directed hypergraph. Due to the lack of the World Wide Web directed hypergraph datasets, we will apply the PageRank algorithm to the metabolic network which is the directed hypergraph itself. The experiments show that our novel PageRank algorithm is successfully applied to this metabolic network.Comment: 6 page

    ChoiceRank: Identifying Preferences from Node Traffic in Networks

    Get PDF
    Understanding how users navigate in a network is of high interest in many applications. We consider a setting where only aggregate node-level traffic is observed and tackle the task of learning edge transition probabilities. We cast it as a preference learning problem, and we study a model where choices follow Luce's axiom. In this case, the O(n)O(n) marginal counts of node visits are a sufficient statistic for the O(n2)O(n^2) transition probabilities. We show how to make the inference problem well-posed regardless of the network's structure, and we present ChoiceRank, an iterative algorithm that scales to networks that contains billions of nodes and edges. We apply the model to two clickstream datasets and show that it successfully recovers the transition probabilities using only the network structure and marginal (node-level) traffic data. Finally, we also consider an application to mobility networks and apply the model to one year of rides on New York City's bicycle-sharing system.Comment: Accepted at ICML 201

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets

    Network Capacity Bound for Personalized PageRank in Multimodal Networks

    Full text link
    In a former paper the concept of Bipartite PageRank was introduced and a theorem on the limit of authority flowing between nodes for personalized PageRank has been generalized. In this paper we want to extend those results to multimodal networks. In particular we introduce a hypergraph type that may be used for describing multimodal network where a hyperlink connects nodes from each of the modalities. We introduce a generalisation of PageRank for such graphs and define the respective random walk model that can be used for computations. we finally state and prove theorems on the limit of outflow of authority for cases where individual modalities have identical and distinct damping factors.Comment: 28 pages. arXiv admin note: text overlap with arXiv:1702.0373
    corecore