28,075 research outputs found

    Rare-event Simulation and Efficient Discretization for the Supremum of Gaussian Random Fields

    Full text link
    In this paper, we consider a classic problem concerning the high excursion probabilities of a Gaussian random field ff living on a compact set TT. We develop efficient computational methods for the tail probabilities P(supTf(t)>b)P(\sup_T f(t) > b) and the conditional expectations E(Γ(f)supTf(t)>b)E(\Gamma(f) | \sup_T f(t) > b) as bb\rightarrow \infty. For each ε\varepsilon positive, we present Monte Carlo algorithms that run in \emph{constant} time and compute the interesting quantities with ε\varepsilon relative error for arbitrarily large bb. The efficiency results are applicable to a large class of H\"older continuous Gaussian random fields. Besides computations, the proposed change of measure and its analysis techniques have several theoretical and practical indications in the asymptotic analysis of extremes of Gaussian random fields

    Integration Mechanisms for Heading Perception

    Get PDF
    Previous studies of heading perception suggest that human observers employ spatiotemporal pooling to accommodate noise in optic flow stimuli. Here, we investigated how spatial and temporal integration mechanisms are used for judgments of heading through a psychophysical experiment involving three different types of noise. Furthermore, we developed two ideal observer models to study the components of the spatial information used by observers when performing the heading task. In the psychophysical experiment, we applied three types of direction noise to optic flow stimuli to differentiate the involvement of spatial and temporal integration mechanisms. The results indicate that temporal integration mechanisms play a role in heading perception, though their contribution is weaker than that of the spatial integration mechanisms. To elucidate how observers process spatial information to extract heading from a noisy optic flow field, we compared psychophysical performance in response to random-walk direction noise with that of two ideal observer models (IOMs). One model relied on 2D screen-projected flow information (2D-IOM), while the other used environmental, i.e., 3D, flow information (3D-IOM). The results suggest that human observers compensate for the loss of information during the 2D retinal projection of the visual scene for modest amounts of noise. This suggests the likelihood of a 3D reconstruction during heading perception, which breaks down under extreme levels of noise

    Log-correlated Gaussian fields: an overview

    Get PDF
    We survey the properties of the log-correlated Gaussian field (LGF), which is a centered Gaussian random distribution (generalized function) hh on Rd\mathbb R^d, defined up to a global additive constant. Its law is determined by the covariance formula Cov[(h,ϕ1),(h,ϕ2)]=Rd×Rdlogyzϕ1(y)ϕ2(z)dydz\mathrm{Cov}\bigl[ (h, \phi_1), (h, \phi_2) \bigr] = \int_{\mathbb R^d \times \mathbb R^d} -\log|y-z| \phi_1(y) \phi_2(z)dydz which holds for mean-zero test functions ϕ1,ϕ2\phi_1, \phi_2. The LGF belongs to the larger family of fractional Gaussian fields obtained by applying fractional powers of the Laplacian to a white noise WW on Rd\mathbb R^d. It takes the form h=(Δ)d/4Wh = (-\Delta)^{-d/4} W. By comparison, the Gaussian free field (GFF) takes the form (Δ)1/2W(-\Delta)^{-1/2} W in any dimension. The LGFs with d{2,1}d \in \{2,1\} coincide with the 2D GFF and its restriction to a line. These objects arise in the study of conformal field theory and SLE, random surfaces, random matrices, Liouville quantum gravity, and (when d=1d=1) finance. Higher dimensional LGFs appear in models of turbulence and early-universe cosmology. LGFs are closely related to cascade models and Gaussian branching random walks. We review LGF approximation schemes, restriction properties, Markov properties, conformal symmetries, and multiplicative chaos applications.Comment: 24 pages, 2 figure

    Neighborhood radius estimation in Variable-neighborhood Random Fields

    Full text link
    We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy to the one dimensional setting we call these neighborhood symbols the context of the region. This framework is a natural extension, to d-dimensional fields, of the notion of variable-length Markov chains introduced by Rissanen (1983) in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context

    On ANOVA decompositions of kernels and Gaussian random field paths

    Get PDF
    The FANOVA (or "Sobol'-Hoeffding") decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, a practical limitation is that computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on random field models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. In the present work, we focus on FANOVA decompositions of Gaussian random field sample paths, and we notably introduce an associated kernel decomposition (into 2^{2d} terms) called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of Gaussian random field sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging
    corecore