6 research outputs found

    Establishing trust relationships and secure channels in opportunistic networks

    Full text link
    &nbsp;An effective system with techniques and algorithms that preserve the completeness and integrity of packets in a network and protects Opportunistic Networks from packet dropping and modification attacks has been proposed in this thesis. The techniques and attributes used to create the system involve using Merkle trees, trust, and reputation.<br /

    Defense and traceback mechanisms in opportunistic wireless networks

    Full text link
    &nbsp;In this thesis, we have identified a novel attack in OppNets, a special type of packet dropping attack where the malicious node(s) drops one or more packets (not all the packets) and then injects new fake packets instead. We name this novel attack as the Catabolism attack and propose a novel attack detection and traceback approach against this attack referred to as the Anabolism defence. As part of the Anabolism defence approach we have proposed three techniques: time-based, Merkle tree based and Hash chain based techniques for attack detection and malicious node(s) traceback. We provide mathematical models that show our novel detection and traceback mechanisms to be very effective and detailed simulation results show our defence mechanisms to achieve a very high accuracy and detection rate

    FAPMIC: Fake Packet and Selective Packet Drops Attacks Mitigation By Merkle Hash Tree in Intermittently Connected Networks

    Get PDF
    Delay/Disruption Tolerant Networks (DTNs) are a special category of IntermittentlyConnectedNetworks (ICNs). It has features such as long-delay, frequent-disruption, asymmetrical-data-rates, and high-bundle-error-rates. DTNs have been mainly developed for planet-to-planet networks, commonly known as Inter-Planetary-Networks (IPNs). However, DTNs have shown undimmed potency in challenged communication networks, such as DakNet, ZebraNet, KioskNet and WiderNet. Due to unique characteristics (Intermittent-connectivity and long-delay) DTNs face tough/huge/several challenges in various research areas i.e bundle-forwarding, key-distribution, privacy, bundle-fragmentation, and malicious/selfish nodes particularly. Malicious/selfish nodes launch various catastrophic attacks, this includes, fake packet attacks, selective packet drops attacks, and denial-of-service/flood attacks. These attacks inevitably consume limited resources (persistent-buffer and bandwidth) in DTNs. Fake-packet and selective-packet-drops attacks are top among the challenging attacks in ICNs. The focus of this article is on critical analyses of fake-packet and selective-packet-drops attacks. The panoramic view on misbehavior nodes mitigation algorithms are analyzed, and evaluated mathematically through several parameters for detection probability/accuracy. This article presents a novel algorithm to detects/mitigates fake-packet and selective-packet-drops attacks. Trace-driven simulation results show the proposed algorithm of this article accurately (enhanced detection accuracy, reduces false-positive/false-negative rates) detects malicious nodes which launch fake-packet and selective-packet-drops attacks, unlike previously proposed algorithms which detect only one attack (fake-packet or packet-drops at a time) or detect only malicious path (do not exactly detect malicious nodes which launch attacks)

    Involuntary Signal-Based Grounding of Civilian Unmanned Aerial Systems (UAS) in Civilian Airspace

    Get PDF
    This thesis investigates the involuntary signal-based grounding of civilian unmanned aerial systems (UAS) in unauthorized air spaces. The technique proposed here will forcibly land unauthorized UAS in a given area in such a way that the UAS will not be harmed, and the pilot cannot stop the landing. The technique will not involuntarily ground authorized drones which will be determined prior to the landing. Unauthorized airspaces include military bases, university campuses, areas affected by a natural disaster, and stadiums for public events. This thesis proposes an early prototype of a hardware-based signal based involuntary grounding technique to handle the problem by immediately grounding unauthorized drones. Research in the development of UAS is in the direction of airspace integration. For the potential of airspace integration three communication protocols were evaluated: LoRa WAN, Bluetooth 5, and Frequency Shift Keying (FSK) for their long range capabilities. Of the three technologies, LoRa WAN transmitted the farthest, however the FSK module transmitted a comparable distance at a lower power. The power measurements were taken using existing modules, however, due to LoRa using a higher frequency than the FSK module this outcome was expected
    corecore