54,422 research outputs found

    Error Resilient Multipath Video Delivery on Wireless Overlay Networks

    Get PDF
    Real time applications delivering multimedia data over wireless networks still pose many challenges due to high throughput and stringent delay requirements. Overlay networks with multipath transmission is the promising solution to address the above problems. But in wireless networks the maintenance of overlay networks induce additional overheads affecting the bulky and delay sensitive delivery of multimedia data. To minimize the overheads, this work introduces the Error Compensated Data Distribution Model (ECDD) that aids in reducing end to end delays and overheads arising from packet retransmissions. The ECDD adopts mTreebone algorithm to identify the unstable wireless nodes and construct overlay tree. The overlay tree is further split to support multipath transmissions. A sub packetization mechanism is adopted for multipath video data delivery in the ECDD. A forward error correction mechanism and sub-packet retransmission techniques adopted in ECDD enables to reduce the overhead and end to end delay. The simulation results presented in this paper prove that the ECDD model proposed achieves lower end to end delay and outperforms the existing models in place. Retransmission requests are minimized by about 52.27% and bit errors are reduced by about 23.93% than Sub-Packet based Multipath Load Distribution

    Scheduling for Optimal Rate Allocation in Ad Hoc Networks With Heterogeneous Delay Constraints

    Full text link
    This paper studies the problem of scheduling in single-hop wireless networks with real-time traffic, where every packet arrival has an associated deadline and a minimum fraction of packets must be transmitted before the end of the deadline. Using optimization and stochastic network theory we propose a framework to model the quality of service (QoS) requirements under delay constraints. The model allows for fairly general arrival models with heterogeneous constraints. The framework results in an optimal scheduling algorithm which fairly allocates data rates to all flows while meeting long-term delay demands. We also prove that under a simplified scenario our solution translates into a greedy strategy that makes optimal decisions with low complexity

    Random sensory networks: a delay in analysis

    Get PDF
    A fundamental function performed by a sensory network is the retrieval of data gathered collectively by sensor nodes. The metrics that measure the efficiency of this data collection process are time and energy. In this paper, we study via simple discrete mathematical models, the statistics of the data collection time in sensory networks. Specifically, we analyze the average minimum delay in collecting randomly located/distributed sensors data for networks of various topologies when the number of nodes becomes large. Furthermore, we analyze the impact of various parameters such as size of packet, transmission range, and channel erasure probability on the optimal time performance. Our analysis applies to directional antenna systems as well as omnidirectional ones. This paper focuses on directional antenna systems and briefly presents results on omnidirectional antenna systems. Finally, a simple comparative analysis shows the respective advantages of the two systems

    RouteNet-Fermi: Network Modeling with Graph Neural Networks

    Get PDF
    Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of Markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as Queuing Theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and packet loss of a network. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-Markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and scales accurately to larger networks. Our model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset of 1,000 samples, including network topologies one order of magnitude larger than those seen during training. Finally, we have also evaluated RouteNet-Fermi with measurements from a physical testbed and packet traces from a real-life network.Comment: This paper has been accepted for publication at IEEE/ACM Transactions on Networking 2023 (DOI: 10.1109/TNET.2023.3269983). \copyright 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Journal Staff

    Get PDF
    We investigate the performance of delay constrained data transmission over wireless networks without end-to-end feedback. Forward error-correction coding (FEC) is performed at the bit level to combat channel distortions and random linear network coding (RLNC) is performed at the packet level to recover from packet erasures. We focus on the scenario where RLNC re-encoding is performed at intermediate nodes and we assume that any packet that contains bit errors after FEC decoding can be detected and erased. To facilitate explicit characterization of data transmission over network-coded wireless systems, we propose a generic two-layer abstraction of a network that models both bit/symbol-level operations at the lower layer (termed PHY-layer) over several heterogeneous links and packet-level operations at the upper layer (termed NET-layer). Based on this model, we propose a network reduction method to characterize the throughput-reliability function of the end-to-end transmission. Our approach not only reveals an explicit tradeoff between data delivery rate and reliability, but also provides an intuitive visualization of the bottlenecks within the underlying network. We illustrate our approach via a point-to-point link and a relay network and highlight the advantages of this method over capacity-based approaches.Accepted for publication in IEEE Globecom 2014. Copyright will be transferred to IEEE without notice.QS22014</p

    Packet level measurement over wireless access

    Get PDF
    PhDPerformance Measurement of the IP packet networks mainly comprise of monitoring the network performance in terms of packet losses and delays. If used appropriately, these network parameters (i.e. delay, loss and bandwidth etc) can indicate the performance status of the network and they can be used in fault and performance monitoring, network provisioning, and traffic engineering. Globally, there is a growing need for accurate network measurement to support the commercial use of IP networks. In wireless networks, transmission losses and communication delays strongly affect the performance of the network. Compared to wired networks, wireless networks experience higher levels of data dropouts, and corruption due to issues of channel fading, noise, interference and mobility. Performance monitoring is a vital element in the commercial future of broadband packet networking and the ability to guarantee quality of service in such networks is implicit in Service Level Agreements. Active measurements are performed by injecting probes, and this is widely used to determine the end to end performance. End to end delay in wired networks has been extensively investigated, and in this thesis we report on the accuracy achieved by probing for end to end delay over a wireless scenario. We have compared two probing techniques i.e. Periodic and Poisson probing, and estimated the absolute error for both. The simulations have been performed for single hop and multi- hop wireless networks. In addition to end to end latency, Active measurements have also been performed for packet loss rate. The simulation based analysis has been tried under different traffic scenarios using Poisson Traffic Models. We have sampled the user traffic using Periodic probing at different rates for single hop and multiple hop wireless scenarios. 5 Active probing becomes critical at higher values of load forcing the network to saturation much earlier. We have evaluated the impact of monitoring overheads on the user traffic, and show that even small amount of probing overhead in a wireless medium can cause large degradation in network performance. Although probing at high rate provides a good estimation of delay distribution of user traffic with large variance yet there is a critical tradeoff between the accuracy of measurement and the packet probing overhead. Our results suggest that active probing is highly affected by probe size, rate, pattern, traffic load, and nature of shared medium, available bandwidth and the burstiness of the traffic

    A two-level Markov model for packet loss in UDP/IP-based real-time video applications targeting residential users

    Get PDF
    The packet loss characteristics of Internet paths that include residential broadband links are not well understood, and there are no good models for their behaviour. This compli- cates the design of real-time video applications targeting home users, since it is difficult to choose appropriate error correction and concealment algorithms without a good model for the types of loss observed. Using measurements of residential broadband networks in the UK and Finland, we show that existing models for packet loss, such as the Gilbert model and simple hidden Markov models, do not effectively model the loss patterns seen in this environment. We present a new two-level Markov model for packet loss that can more accurately describe the characteristics of these links, and quantify the effectiveness of this model. We demonstrate that our new packet loss model allows for improved application design, by using it to model the performance of forward error correction on such links
    • 

    corecore