28,849 research outputs found

    Wireless internet architecture and testbed for wineglass

    Get PDF
    One of the most challenging issues in the area of mobile communication is the deployment of IPbased wireless multimedia networks in public and business environments. The public branch may involve public mobile networks, like UMTS as 3G system, while the business branch introduces local radio access networks by means of W-LANs. Conventional mobile networks realise mobile specific functionality, e.g. mobility management or authentication and accounting, by implementing appropriate mechanisms in specific switching nodes (e.g. SGSN in GPRS). In order to exploit the full potential of IP networking solutions a replacement of these mechanisms by IP-based solutions might be appropriate. In addition current and innovative future services in mobile environments require at least soft-guaranteed, differentiated QoS. Therefore the WINE GLASS project investigates and implements enhanced IP-based techniques supporting mobility and QoS in a wireless Internet architecture. As a means to verify the applicability of the implemented solutions, location-aware services deploying both IP-mobility and QoS mechanisms will be implemented and demonstratedPeer ReviewedPostprint (published version

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Fronthaul evolution: From CPRI to Ethernet

    Get PDF
    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved

    The Contributory Effect of Latency on the Quality of Voice Transmitted over the Internet

    Get PDF
    Deployment of Voice over Internet Protocol (VoIP) is rapidly growing worldwide due to the new services it provides and cost savings derived from using a converged IP network. However, voice quality is affected by bandwidth, delay, latency, jitter, packet loss e.t.c. Latency is the dominant factor that degrades quality of voice transfer. There is therefore strong need for a study on the effect of Latency with the view to improving Quality of Voice (QoV) in VoIP network. In this work, Poisson probability theorem, Markov Chain, Probability distribution theorems and Network performance metric were used to study the effect of latency on QoS in VoIP network. This is achieved by considering the effect of latency resulting from several components between two points in multiple networks. The NetQoS Latency Calculator, Net-Cracker ProfessionalÂź for Modeling and Matlab/SimulinkÂź for simulating network were tools used and the results obtained compare favourably well with theoretical facts

    Duplicate detection methodology for IP network traffic analysis

    Full text link
    Network traffic monitoring systems have to deal with a challenging problem: the traffic capturing process almost invariably produces duplicate packets. In spite of this, and in contrast with other fields, there is no scientific literature addressing it. This paper establishes the theoretical background concerning data duplication in network traffic analysis: generating mechanisms, types of duplicates and their characteristics are described. On this basis, a duplicate detection and removal methodology is proposed. Moreover, an analytical and experimental study is presented, whose results provide a dimensioning rule for this methodology.Comment: 7 pages, 8 figures. For the GitHub project, see https://github.com/Enchufa2/nantool
    • 

    corecore