7 research outputs found

    PVS Strategies for Proving Abstraction Properties of Automata

    Get PDF
    AbstractAbstractions are important in specifying and proving properties of complex systems. To prove that a given automaton implements an abstract specification automaton, one must first find the correct abstraction relation between the states of the automata, and then show that this relation is preserved by all corresponding action sequences of the two automata. This paper describes tool support based on the PVS theorem prover that can help users accomplish the second task, in other words, in proving a candidate abstraction relation correct. This tool support relies on a clean and uniform technique for defining abstraction properties relating automata that uses library theories for defining abstraction relations and templates for specifying automata and abstraction theorems. The paper then describes how the templates and theories allow development of generic, high level PVS strategies that aid in the mechanization of abstraction proofs. These strategies first set up the standard subgoals for the abstraction proofs and then execute the standard initial proof steps for these subgoals, thus making the process of proving abstraction properties in PVS more automated. With suitable supplementary strategies to implement the “natural” proof steps needed to complete the proofs of any of the standard subgoals remaining to be proved, the abstraction proof strategies can form part of a set of mechanized proof steps that can be used interactively to translate high level proof sketches into PVS proofs. Using timed I/O automata examples taken from the literature, this paper illustrates use of the templates, theories, and strategies described to specify and prove two types of abstraction property: refinement and forward simulation

    A verification framework for hybrid systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 193-205) and index.Combining; discrete state transitions with differential equations, Hybrid system models provide an expressive formalism for describing software systems that interact with a physical environment. Automatically checking properties, such as invariance and stability, is extremely hard for general hybrid models, and therefore current research focuses on models with restricted expressive power. In this thesis we take a complementary approach by developing proof techniques that are not necessarily automatic, but are applicable to a general class of hybrid systems. Three components of this thesis, namely, (i) semantics for ordinary and probabilistic hybrid models, (ii) methods for proving invariance, stability, and abstraction, and (iii) software tools supporting (i) and (ii), are integrated within a common mathematical framework. (i) For specifying nonprobabilistic hybrid models, we present Structured Hybrid I/O Automata (SHIOAs) which adds control theory-inspired structures, namely state models, to the existing Hybrid I/O Automata, thereby facilitating description of continuous behavior. We introduce a generalization of SHIOAs which allows both nondeterministic and stochastic transitions and develop the trace-based semantics for this framework. (ii) We present two techniques for establishing lower-bounds on average dwell time (ADT) for SHIOA models. This provides a sufficient condition of establishing stability for SHIOAs with stable state models. A new simulation-based technique which is sound for proving ADT-equivalence of SHIOAs is proposed. We develop notions of approximate implementation and corresponding proof techniques for Probabilistic I/O Automata. Specifically, a PIOA A is an E-approximate implementation of B, if every trace distribution of A is c-close to some trace distribution of B-closeness being measured by a metric on the space of trace distributions.(cont.) We present a new class of real-valued simulation functions for proving c-approximate implementations, and demonstrate their utility in quantitatively reasoning about probabilistic safety and termination. (iii) We introduce a specification language for SHIOAs and a theorem prover interface for this language. The latter consists of a translator to typed high order logic and a set of PVS-strategies that partially automate the above verification techniques within the PVS theorem prover.by Sayan Mitra.Ph.D

    www.elsevier.com/locate/entcs PVS Strategies for Proving Abstraction Properties of Automata

    No full text
    Abstractions are important in specifying and proving properties of complex systems. To prove that a given automaton implements an abstract specification automaton, one must first find the correct abstraction relation between the states of the automata, and then show that this relation is preserved by all corresponding action sequences of the two automata. This paper describes tool support based on the PVS theorem prover that can help users accomplish the second task, in other words, in proving a candidate abstraction relation correct. This tool support relies on a clean and uniform technique for defining abstraction properties relating automata that uses library theories for defining abstraction relations and templates for specifying automata and abstraction theorems. The paper then describes how the templates and theories allow development of generic, high level PVS strategies that aid in the mechanization of abstraction proofs. These strategies first set up the standard subgoals for the abstraction proofs and then execute the standard initial proof steps for these subgoals, thus making the process of proving abstraction properties in PVS more automated. With suitable supplementary strategies to implement the “natural ” proof steps needed to complete the proofs of any of the standard subgoals remaining to be proved, the abstractio

    Proceedings of the Second NASA Formal Methods Symposium

    Get PDF
    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis
    corecore