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Abstract

Abstractions are important in specifying and proving properties of complex systems. To prove
that a given automaton implements an abstract specification automaton, one must first find the
correct abstraction relation between the states of the automata, and then show that this relation
is preserved by all corresponding action sequences of the two automata. This paper describes
tool support based on the PVS theorem prover that can help users accomplish the second task,
in other words, in proving a candidate abstraction relation correct. This tool support relies on a
clean and uniform technique for defining abstraction properties relating automata that uses library
theories for defining abstraction relations and templates for specifying automata and abstraction
theorems. The paper then describes how the templates and theories allow development of generic,
high level PVS strategies that aid in the mechanization of abstraction proofs. These strategies first
set up the standard subgoals for the abstraction proofs and then execute the standard initial proof
steps for these subgoals, thus making the process of proving abstraction properties in PVS more
automated. With suitable supplementary strategies to implement the “natural” proof steps needed
to complete the proofs of any of the standard subgoals remaining to be proved, the abstraction
proof strategies can form part of a set of mechanized proof steps that can be used interactively to
translate high level proof sketches into PVS proofs. Using timed I/O automata examples taken
from the literature, this paper illustrates use of the templates, theories, and strategies described to
specify and prove two types of abstraction property: refinement and forward simulation.

Keywords: Mechanical Theorem Proving, Strategies, I/O Automata, Abstraction, Refinement,
Forward Simulation.

1
Email: mitras@theory.csail.mit.edu

2
Email: archer@itd.nrl.navy.mil

Electronic Notes in Theoretical Computer Science 125 (2005) 45–65

1571-0661 © 2005 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.01.005
Open access under CC BY-NC-ND license.

mailto:mitras@theory.csail.mit.edu
mailto:archer@itd.nrl.navy.mil
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


1 Introduction

Abstractions are essential for applying formal methods to verify certain classes
of properties of complex systems, such as properties of system executions.
Given an automaton C, suppose we wish to verify that every visible behavior—
i.e., trace—of C satisfies some property P . An effective way of doing this is to
model the property P itself as the set of traces of an abstract automaton A, and
then to show that the set of traces of C is a subset of the set of traces of A. This
method generalizes to using not just a single abstraction, as above, but many
levels of abstraction between the concrete, possibly complex implementation
of a system and its abstract specification. A systematic way of showing trace
inclusion—that every trace of automaton C is included in the set of traces
of another automaton A—is to show that there exists an abstraction relation
between the states of the two automata. Thus the creation of a specification
automaton A for the property P can reduce the problem of verifying that P
holds for C to proving an abstraction relation between C and A.

There are several possible abstraction relations between two automata,
homomorphism, refinement, forward simulation, backward simulation, and so
on. Forward-and-backward simulation relations are complete with respect to
trace properties of I/O automata [9], and therefore they are powerful tools for
automata-based verification. In this paper, we present a clean and uniform
way of specifying abstraction properties relating pairs of automata in the PVS
theorem prover [17] and describe how our specifications allow us to provide a
set of generic strategies that aid users in proving abstraction properties while
minimizing the necessary interaction with the prover.

One approach to supporting generic strategies in tactic-based provers such
as PVS is to adhere to specification templates that provide a uniform or-
ganization for specifications and properties upon which strategies can rely.
This approach has been used in TAME (Timed Automata Modeling Environ-
ment) [2,3], an interface which is designed to simplify proving properties of
automata in PVS. Until now, TAME proof support has been aimed at prop-
erties of a single automaton—mainly state and transition invariants for (both
timed and untimed) I/O automata, though TAME does include minimal strat-
egy support for proofs of properties of execution sequences of I/O automata.
All of TAME’s proof support is aimed at supplying “natural” proof steps that
users can employ in checking high level hand proofs of properties of automata
that are specified following the TAME automaton template.

One longstanding goal for TAME has been to extend its proof support
to include proofs of refinement, simulation, and other abstraction properties
involving two automata. This goal includes the ability to reuse established
specifications and invariants of two automata in defining and proving an ab-
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straction relation between them. A second part of this goal is that the new
proof support for abstraction properties should be generic in the same way
as TAME support for invariant proofs: that is, there should be a fixed set
of TAME proof steps, supported by PVS strategies, that can be applied to
proofs of abstraction properties without being tailored to a specific pair of
automata. Finally, this goal includes making the new TAME proof steps
“natural”—that is, they should provide a straightforward representation in
PVS of the high level proof steps used in hand proofs of abstraction proper-
ties. The theory interpretation feature [15] in the latest version of PVS (PVS
Version 3), combined with some recent enhancements in PVS 3.2, makes it
possible to accomplish these goals.

In previous work [12], we outlined our plan for taking advantage of these
new PVS features in specifying abstraction properties and developing uni-
form PVS strategies for proofs of these properties. In this paper, we describe
how specification and proofs of abstraction relations between two automata
can now in fact be accomplished in TAME, and illustrate these new capabil-
ities on examples. Section 2 reviews automata models and TAME’s support
for invariant proofs; discusses the past problem with designing TAME sup-
port for abstraction proofs; and shows how with PVS 3.2, methods similar to
those used in TAME support for invariant proofs can now be used to provide
TAME support for abstraction proofs. Section 3 describes the strategies we
have developed for proving refinement and illustrates their usage on examples.
Section 4 does the same for forward simulation. Finally, Section 5 discusses
some related work, and Section 6 presents our conclusions and future plans.

2 Background

2.1 I/O Automata model

The formal model underlying TAME is the MMT automaton [11]. A general
theory of Timed Input/Output Automata (TIOA) [8] for systems involving
both discrete and continuous behavior has evolved since the inception of the
MMT automaton. The TIOA model subsumes many other automata mod-
els, including the (untimed) I/O automaton model suitable for describing sys-
tems with only discrete events, the MMT automaton model, and the Alur-Dill
timed automaton model [1]. Although the model used for the original devel-
opment of the TAME was the MMT automaton, it will be possible to make
the TAME templates and strategies work for a large and useful class of timed
I/O automata with minor changes (see [6] for a report on ongoing work in
this direction). Therefore, in this paper, we refer to MMT timed automata
simply as (timed) I/O automata. In the following paragraph we give a very
brief overview of the I/O automaton framework. For a complete description
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of the TIOA model and the related results, see [8].

The main elements of an I/O automaton A are its set of states, determined
by the values of a set of state variables; its set of (usually parameterized)
actions that trigger state transitions; and its set of start states. An execution
of an A is an alternating sequence of states and actions of A in which the first
state is an initial state of A and each action in the sequence transforms its
predecessor state into its successor state. For systems involving continuous
evolution, a special time passage action records the changes in the continuous
variables after an interval of time. The set of all possible behavior of A, then,
is the set of all its executions. To define the notion of visible behavior, the
actions of A are partitioned into visible and invisible actions. The trace, or the
externally visible behavior of A, corresponding to a given execution α is the
sequence of visible actions in α. In order to define the parallel composition
operator on automata in a meaningful way, the visible actions are further
partitioned into input and output actions. Since in the rest of this paper we
reason only about individual automata (simple or explicitly composed) and
not about component automata that are composed using the composition
operator, for simplicity, we do not partition visible actions into input and
output subsets.

2.2 TAME support for invariant proofs

State (or transition) invariants of an I/O automaton are properties that hold
for all of its reachable states (or reachable transitions). To support proofs of
invariants of an I/O automaton, TAME provides a template for specifying a
(timed or untimed) I/O automaton, a set of standard PVS theories, and a set
of strategies that embody the natural high-level steps typically needed in hand
proofs of invariants. The standard PVS theories include generic theories such
as machine, which establishes the principle of induction over reachable states,
and special-purpose theories that can be generated from the DATATYPE
declarations in an instantiation of the TAME automaton template. A sample
of typical TAME steps for invariant proofs is shown in Figure 1.

2.3 Previous barriers to TAME support for abstraction proofs

Abstraction properties involve a pair of automata, and hence to express them
generally, one needs a way to represent abstract automaton objects in PVS.
The most convenient way to represent abstract automaton objects would be
to make them instances of a type automaton. But, there are barriers to doing
this in PVS. An I/O automaton in TAME is determined by instantiations
of two types (actions and states), a set of start states, and a transition
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������������������������������������������������������������������������������������������
Proof Step TAME Strategy Use������������������������������������������������������������������������������������������

Get base and induction cases AUTO_INDUCT Start an induction proof
and do standard initial steps������������������������������������������������������������������������������������������
Appeal to precondition of an APPLY_SPECIFIC_PRECOND Demonstrate need to use
action precondition������������������������������������������������������������������������������������������
Apply the inductive hypothesis APPLY_IND_HYP Supplement AUTO_INDUCT’s
to non-default argument(s) use of default arguments������������������������������������������������������������������������������������������
Apply an auxiliary invariant APPLY_INV_LEMMA Needed in proving
lemma “non-inductive” invariants������������������������������������������������������������������������������������������
Break down into cases based SUPPOSE Add proof comments and
on a predicate labels to PVS’ CASE������������������������������������������������������������������������������������������
Apply “obvious” reasoning, e.g., TRY_SIMP Finish proof branch once
propositional, equational, datatype facts have been introduced������������������������������������������������������������������������������������������
Use a fact from the mathematical APPLY_LEMMA Perform special
theory for a state variable type mathematical reasoning������������������������������������������������������������������������������������������
Instantiate embedded quantifier INST_IN Instantiate but don’t split first������������������������������������������������������������������������������������������
Skolemize embedded quantifier SKOLEM_IN Skolemize but don’t split first�������������������������������������������������������������������������������������������
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Fig. 1. A sample of TAME steps for I/O automata invariant proofs

relation. Abstractly, these elements can be thought of as fields in a record,
and an abstract automaton object can be thought of as an instance of the
corresponding record type. However, such a record type is not possible in
PVS, because record fields in PVS are not permitted to have type “type”. An
alternative way to express a type of automata would be to use create a poly-
morphic type automaton[α, σ] analogous to the polymorphic type (α,σ)ioa
in [14]. However, unlike Isabelle/HOL, which was used in [14], PVS does not
support parametric polymorphism.

Because no general automaton type can be defined in PVS, I/O automata
are represented in TAME as theories obtained by instantiating the TAME
automaton template. Invariants for I/O automata are based on the definitions
in these theories. We will refer to instantiations of the TAME automaton
template as TAME automata.

One possible way to support the definition of abstraction properties be-
tween two TAME automata is to create abstraction property templates that
import two TAME automata (together with their associated invariants), and
then require the user to tailor certain details of a definition of the abstrac-
tion property to match the details of the TAME automata. However, this
approach is very awkward for the user, who must tailor fine points of complex
definitions to specific cases and be particularly careful about PVS naming con-
ventions. It is also awkward for the strategy-writer, whose strategies would
need to make multiple probes in a standard property-definition structure to
find details of the tailored definitions. Further, this scheme relies on the user
adhering properly to a property template to permit a strategy to be reused in
different instantiations of the property.
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automaton�THEORY
BEGIN

actions� TYPE��
states� TYPE��
start�s�states��bool�
visible�a�actions��bool�
enabled�a�actions� s�states�� bool�
trans�a�actions� s�states��states�

reachable�s�states��bool
invisible�seq�trans�s�� s��states��bool�
time�seq�trans�s��s��states� t�real��bool�

END automaton

Fig. 2. The new TAME supporting theory automaton

What is really needed is some means to define abstraction properties gener-
ically in PVS. The design described in Section 2.4 provides such a means.

2.4 A new design for defining and proving abstraction in TAME

With the theory instantiation feature of PVS, together with other new PVS
features, we have been able to design support for defining abstraction relations
between two I/O automata that is both straightforward for a TAME user and
clean from the point of view of the strategy developer. This support relies
on (1) a new TAME supporting theory automaton, (2) a library of property
theories, and (3) new TAME templates for stating abstraction properties as
theorems.

Figure 2 shows the theory automaton, which is an abstract declaration
of the elements that specify an automaton. Other than the pattern of type
restrictions, theory automaton makes no restrictions on the elements of its in-
stantiations. In TAME, automaton is instantiated only with TAME automata.
The names and types of elements in automaton match exactly the names and
types of elements in the TAME automaton template. A new PVS feature
allows the use of syntax matching to automatically extract the elements from
a TAME automaton specification that instantiate elements of automaton, al-
lowing the user to simply refer to the theory name of the TAME automaton
as the instantiation for automaton; this relieves the user from the tedious ef-
fort of explicitly listing element instantiations. Because states and actions

are both declared as TYPE+, i.e., nonempty types, instantiating automaton

results in two TCCs (type correctness conditions) requiring these types to be
nonempty.

Instantiation of automaton by a TAME automaton provides concrete def-
initions of the automaton’s elements. The concrete definitions for the first six
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of these elements are written by the user when filling in the TAME automa-
ton template to define a TAME automaton. The remaining three elements
are the same for all TAME automata and are defined in the time machine

theory which is a part of the TAME library. The user does not have to redefine
them for specific automata, because an appropriate instance of time machine

is imported in the TAME automaton template. In every instantiation of
automaton by a TAME automaton, the elements of automaton have the follow-
ing properties: The visible and start predicates define the set of externally
visible actions and the set of start states, respectively. The enabled(a,s)

function returns true if action a is enabled in state s; it returns false

otherwise. The transition function trans(a,s) gives the poststate that re-
sults from applying action a on state s. The reachable predicate recur-
sively defines the set of reachable states of the automaton. The predicate
invisible seq trans(s1,s2) is true if and only if there exists a sequence of
invisible actions that takes state s1 to s2. And time seq trans(s1,s2,t) is
true if and only if there exists a sequence of invisible and time passage actions
that takes s1 to s2 with a total time passage of t units.

Examples of property theories for weak refinement and forward simulation
are shown in Figures 3 and 4. As an aid to understanding the PVS notation,
we will define in English the more complex of these two properties: forward
simulation. A relation r between the states of a concrete automaton C and
an abstract automaton A is a forward simulation relation if (1) for every start
state of C, there exists a start state of A such that the two states are related
by r, and (2) for every reachable transition (s C, a, s1 C) of C, if a state

weak�refinement� A� C � THEORY automaton�
actmap� �C�actions �� A�actions��
r� �C�states �� A�states� � � THEORY

BEGIN

� weak�refinement�base� bool 	

 FORALL�s�C�C�states�� �C�start�s�C� 	� A�start�r�s�C���

� weak�refinement�step � bool 	
� FORALL�s�C�C�states� a�C�C�actions��
� C�reachable�s�C� AND C�enabled�a�C�s�C� 	�
� �C�visible�a�C� 	�
� �A�enabled�actmap�a�C��r�s�C�� AND
� r�C�trans�a�C�s�C��	 A�trans�actmap�a�C��r�s�C���� AND
� �NOT C�visible�a�C� 	�
�� ��r�s�C� 	 r�C�trans�a�C�s�C���
�� OR �r�C�trans�a�C�s�C��	 A�trans�actmap�a�C��r�s�C�����

�
 weak�refinement� bool 	 weak�refinement�base � weak�refinement�step

END weak�refinement

Fig. 3. The new TAME property theory weak refinement
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s A is related to s C, then there exists an action sequence σ of A that takes
s A to s3 A such that: (a) r(s1 C, s3 A), and (b) the visible part of σ is
same as of a. In the definition of f simulation action in Figure 4 part (2) of
this definition is broken into the three cases—a is a visible non-time-passage
action, a is a time-passage action, and a is an invisible action—to simplify
strategy development. We are building a library of property theories which
include other commonly used abstraction relations such as homomorphism,
refinement, backward simulation, etc.

forward�simulation�C� A � THEORY timed�automaton�
actmap� �C�actions �� A�actions��
r� �C�states� A�states �� bool�� � THEORY

BEGIN
� f�simulation�base� bool 	 FORALL
s�C��
� 
C�start
s�C� 	� EXISTS
s�A�� A�start
s�A� AND r
s�C�s�A��

� f�simulation�action� bool 	 FORALL
s�C� s��C� s�A� a�C��
� 
C�reachable
s�C� AND A�reachable
s�A� AND r
s�C�s�A� AND
� C�enabled
a�C�s�C� AND s��C 	 C�trans
a�C�s�C�� 	�
� 
C�visible
a�C� AND 
NOT C�nu�
a�C�� 	�
� EXISTS 
s��A� s��A� s��A��
� A�invisible�seq�trans
s�A�s��A� AND
� A�invisible�seq�trans
s��A�s��A� AND
�� r
s��C� s��A� AND A�enabled
actmap
a�C��s��A� AND
�� A�trans
actmap
a�C��s��A� 	 s��A� AND
�� 
C�nu�
a�C� 	�
�� EXISTS 
s��A��
�� A�time�seq�trans
s�A�s��A�timeof
a�C�� AND
�� r
s��C� s��A�� AND
�� 
NOT C�visible
a�C� 	�
�� EXISTS 
s��A��
�� A�invisible�seq�trans
s�A� s��A� AND
�� r
s��C� s��A��

�� forward�simulation� bool 	 f�simulation�base � f�simulation�action

END forward�simulation

Fig. 4. The new TAME property theory forward simulation

A particular instance of the TAME template for stating abstraction proper-
ties as theorems is the theory tip abstraction shown in Figure 5. (Note that
in PVS notation, lists of assignments between the end markers (# and #) de-
note a record value. In TAME, both states and the basic components of states
are record values.) The theory tip abstraction instantiates two copies—one
for each of the abstract and the concrete automata—of the automaton theory,
defines the action and state mappings between the two automata, and imports
the relevant property theory with all the above as parameters.
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tip�abstraction� THEORY

BEGIN

IMPORTING TIP�invariants
IMPORTING SPEC�invariants

MC � THEORY � automaton ��� TIP�decls
MA � THEORY � automaton ��� SPEC�decls

amap�a�C� MC�actions�� MA�actions �
CASES a�C OF

nu�t�� nu�t��
add�child�e�� noop�
children�known�c�� noop�
ack�a�� noop�
resolve�contention�r�� noop�
root�v�� root�v��

ENDCASES

ref�s�C� MC�states�� MA�states �
�	 basic �� �	 done �� EXISTS �v�Vertices�� root�v�s�C� 	��

now �� now�s�C��
first �� �LAMBDA�a�MA�actions�� zero��
last �� �LAMBDA�a�MA�actions�� infinity� 	�

IMPORTING weak�refinement
MA� MC� amap� ref�

tip�refinement�thm� THEOREM weak�refinement

END tip�abstraction

Fig. 5. Instantiating the weak refinement template for TIP

3 Strategies for refinement proofs

In this section, we discuss strategies we have developed for proving weak refine-
ments for timed and untimed I/O automata. Since having a weak refinement
relation between the states of two automata is equivalent to having a refine-
ment relation between the reachable states of the two automata, we will often
simply refer to “refinement” in what follows. We illustrate the utility of these
strategies by sketching the proof of the correctness of a tree based leader elec-
tion protocol and a failure prone memory in a remote procedure call (RPC)
module.

3.1 Design of the refinement strategy

Our main strategy for proving refinements, PROVE REFINEMENT, is based on
the weak refinement property shown in Figure 3. The generic nature of the
definition of the weak refinement property allows us to define PROVE RE-

FINEMENT in such a way that it can be applied to an arbitrary refinement
proof between any given pair of automata. This strategy is designed to
perform much if not all of the work, for an arbitrary instantiation of the
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weak refinement template, of proving by induction that the mapping ref

from the states of concrete automaton MC to the states of abstract automaton
MA is a refinement. The overall structure of PROVE REFINEMENT in terms
of substrategies is shown in Figure 6. First, PROVE REFINEMENT splits a
refinement theorem into its base case and induction case (corresponding to
weak refinement base and weak refinement step in Figure 3). The base
case is delegated to a substrategy called SETUP REF BASE, which performs
the standard steps needed in the base case, including skolemizing, applying
PVS’s EXPAND to the definitions of start and ref, and making some minor
simplifications. PROVE REFINE MENT then probes to see if the base case can
be discharged trivially. Next, PROVE REFINE MENT turns over the induction
branch to the substrategy SETUP REF INDUCT CASES.

START_ENABLEMENT_PROOF DO_TRANS

APPLY_SPECIFIC_PRECONDAPPLY_GENERAL_PRECOND

DO_TRANS

PROVE_REFINEMENT

SETUP_REF_BASE

START_REF_INDUCTION_BRANCH START_REF_INDUCTION_BRANCH

Branching on actions

SETUP_REF_INDUCT_CASES

Fig. 6. The PROVE REFINEMENT strategy and related substrategies.

The substrategy SETUP REF INDUCT CASES splits up the induction step
into individual subgoals for each of the action types in the actions datatype,
and hands off these individual subgoals to the substrategy
START REF INDUCTION BRANCH, which performs skolemization and expands
the definition of visible. As reflected in Figure 6, this yields different sets
of subgoals for visible and invisible actions. For each invisible action, a single
congruence subgoal is generated from the condition in lines 10-11 in Figure 3.
For each visible action, two new subgoals: an enablement subgoal and a con-
gruence subgoal, are generated from lines 7 and 8 in Figure 3, respectively.

Congruence subgoals concern the correspondence of poststates, and
START REF INDUCTION BRANCH applies substrategy DO TRANS to them;
this strategy just expands the transition definition and repeatedly simpli-
fies. START REF INDUCTION BRANCH handles the first (enablement) sub-
goal for visible actions by applying the START ENABLEMENT PROOF strat-
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egy. START ENABLEMENT PROOF splits the enablement goal into subgoals
for the general (timeliness) precondition and the specific precondition of the
action, which it respectively handles by APPLY GENERAL PRECOND followed
by a probe to see if this subgoal can be discharged, and APPLY SPECIFIC PRE-

COND.

PROVE REFINEMENT resolves most of the subgoals for simple base and ac-
tion cases of refinement proofs. For the subgoals that are not resolved, the user
must interact with PVS, using steps such as TAME’s APPLY INV LEMMA,
INST IN, SKOLEM IN, TRY SIMP, and so on. In the next section we intro-
duce the Tree Identify Protocol (TIP), which will serve us as a case study for
illustrating the operation of the above strategies.

3.2 Refinement for correctness of the TIP algorithm

The TIP algorithm is a part of IEEE 1394 Firewire standard [4] and has been
used as a case study for many different formal verification approaches. The
TIP leader election protocol is invoked after a bus reset in the network (i.e.
when a node is added to, or removed from, the network). Immediately after a
bus reset all nodes in the network have equal status, and know only to which
nodes they are directly connected. A leader needs to be chosen to act as the
manager of the bus for subsequent operations. The TIP algorithm “grows”
a directed spanning tree by means of parent-request messages sent from
nodes to connected nodes until a root (the leader) of the tree is identified.
Contention may arise when two nodes simultaneously send parent-requests
to each other, and it is broken by nondeterministic back-off and retry. Fol-
lowing the authors of [4], we model the TIP algorithm as an untimed I/O
automaton TIP which performs all the operations of the algorithm (sending
parent-request messages, breaking contention, etc.) through invisible ac-
tions, and triggers its only visible action root only when a leader is identified.

For correctness, the TIP automaton must satisfy two properties: (a) at
any given point in time there is at most one leader, and (b) in any execution
at most one leader is ever elected, i.e., the root action occurs only once.
Property (a) is an invariant of TIP and has been proved both directly in PVS
by the authors of [4] and in TAME [3]. Property (b) is not an invariant, but
it is captured by the executions of the simple automaton SPEC from [4]. The
SPEC automaton has only one action: a visible action called root that is
disabled after its first occurrence. By proving a that there exists a refinement
from TIP to SPEC, we establish that all traces of TIP are included in the set
of traces of SPEC, which in turn proves property (b).

Figure 5 shows our refinement template instantiated with the automata
TIP and SPEC. The tip abstraction theory in Figure 5 imports the library
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theory weak refinement (Figure 3) with four parameters. The parameters
MA and MC are instantiations of the automaton theory corresponding to the
SPEC and the TIP automata; amap is a map from the actions of TIP to the
actions of SPEC, and ref is the refinement map from the states of TIP to the
states of SPEC. As a result of this importing, the weak refinement relation
between TIP and SPEC is defined, and hence the corresponding refinement
theorem tip refinement thm can be stated.

3.3 Applying the refinement strategy in the TIP case study

For the TIP example, PROVE REFINEMENT divides the proof of tip re-

finement thm into the base case and the induction step. The base case
sequent, which is handled by SETUP REF BASE, is shown in Figure 7, in

��� Base case

��������

��� FORALL �s�C� TIP�decls	states
�

�TIP�decls	start�s�C
 �� SPEC�decls	start�ref�s�C




Fig. 7. Initial base case sequent for tip abstraction.

which TIP decls.start and SPEC decls.start are the start predicates of
TIP and SPEC, respectively. The induction step is split up into six branches
by START ENABLEMENT PROOF, one for each of the six action subtypes in
the TIP decls.actions datatype. Corresponding to each visible action, two
subgoals, for enablement and congruence, are generated. Figures 8 and 9 show
the two subgoals generated for the (visible) nu action in TIP.

�����reachable C�prestate��
reachable�sC�theorem�

��	��enabled C�action��
enabled�nu�timeofC�action�� sC�theorem�


�������
����enabled A�action��

SPEC�decls�enabled
�nu�timeofC�action��
� basic ��

� done �� EXISTS �v� Vertices�� root�v� sC�theorem� ��
now �� now�sC�theorem��
first �� �LAMBDA �a� MA�actions�� zero��
last �� �LAMBDA �a� MA�actions�� infinity� ��

Fig. 8. Initial enablement sequent for the action nu in TIP.

As seen in the saved proof for the TIP case study (Figure 10) all but
two parts of the inductive goal for the root action—the specific enablement
subgoal and the congruence subgoal—were resolved by this strategy auto-
matically. Proving the root specific enablement subgoal required using two
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�����reachable C�prestate��
reachable�sC�theorem�

��	��enabled C�action��
enabled�nu�timeofC�action�� sC�theorem�


�������
����congruence��

� basic ��
� done�� EXISTS �v� Vertices��

root�v� trans�nu�timeofC�acton�� sC�theorem�� ��
now �� now�trans�nu�timeofC�action�� sC�theorem���
first �� �LAMBDA �a� MA�actions�� zero��
last �� �LAMBDA �a� MA�actions�� infinity� � �

SPEC�decls�trans�nu�timeofC�action��
� basic ��

� done�� EXISTS �v� Vertices��
root�v� sC�theorem� ��

now �� now�sC�theorem��
first �� �LAMBDA �a� MA�actions�� zero��
last �� �LAMBDA �a� MA�actions�� infinity� ��

Fig. 9. Initial congruence sequent for the action nu in TIP.

invariant properties of TIP (invariants 13 and 15 from [4]), proved earlier with
TAME. (Informally, invariant 13 says that a root node has the property that
all its edges connect it to its children, and invariant 15 says that at most one
node has this property.) The root congruence subgoal required INST IN. The
root specific enablement and congruence subgoals both required the TAME
“it is now trivial” step TRY SIMP (see Figure 1) to complete.

���
�prove�refinement�
����� �� Case root�rootV�C�action� specific enablement

�skolem�in �A�specific�precondition� �v����
�apply�inv�lemma ���� �s�C�theorem��
�� Applying the lemma
�� �EXISTS �v	 Vertices�	 FORALL �e	 tov�v��	 child�e
 s�C�theorem�� ��
�� ��EXISTS �v	 Vertices�	 FORALL �e	 tov�v��	 child�e
 s�C�theorem�� 
�� �FORALL �v
 w	 Vertices�	
�� ���FORALL �e	 tov�v��	 child�e
 s�C�theorem�� 
�� �FORALL �e	 tov�w��	 child�e
 s�C�theorem���
�� �� v � w���
�inst�in �lemma���� �rootV�C�action��
�inst�in �lemma���� �v��� �rootV�C�action��
�skolem�in �lemma���� �e����
�apply�inv�lemma ���� �s�C�theorem� �e����
�� Applying the lemma
�� FORALL �e	 Edges�	 root�target�e�
 s�C�theorem� �� child�e
 s�C�theorem�
�try�simp��

���� �� Case root�rootV�C�action� congruence
�inst �congruence� �rootV�C�action��
�try�simp����

Fig. 10. TAME refinement proof for TIP/SPEC.

In the interaction of PROVE REFINEMENT and its substrategies, signif-
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icant use is made of formula labels, both for deciding which action to take
based on the presence or absence of a formula with a given label, and to fo-
cus computation on formulae with specific labels. The labels are designed
to be informative: for example, the label A.specific-precondition on line
4 of the proof in Figure 10 belongs to the specific precondition of the root

action of the abstract automaton (in this case, SPEC). This is so that when
an unresolved subgoal is returned to the user, its content is as informative as
possible. For the same reason, PROVE REFINEMENT and its substrategies at-
tach comments to any subgoals they create that denote their significance. The
comment ;; root(rootV C action) specific enablement that appears on
line 2 in Figure 10 indicates that this subgoal is the specific enablement sub-
goal for the action root. The argument to root, rootV C action, is a skolem
constant (automatically generated by PROVE REFINEMENT) for the formal
parameter rootV of root; its suffix C action indicates that it is generated
from an action of the concrete automaton (in this case, TIP). Thus our new
strategy PROVE REFINEMENT) adheres to the same design principles as the
earlier TAME strategies (see [2]).

3.4 Applying the refinement strategy in the RPC case study

Our second case study for refinement proofs concerns the specification and
implementation of the memory component of a remote procedure call (RPC)
module taken from [16]. A failure prone memory component MEM and a
reliable memory component REL MEM are modeled as I/O automata, and
the requirement is to show that every trace of REL MEM is a trace of MEM.
The MEM and REL MEM automata are almost identical, except that the
failure action in MEM is absent in REL MEM. Owing to this similarity, the
refinement map ref is a bijection and the action map amap is an injection. As
noted in [16], a weak refinement from REL MEM to MEM, suffices to establish
trace inclusion. We state this weak refinement property by instantiating the
weak refinement property theory template in a manner analogous to that in
the TIP/SPEC example. In the proof in this case, all but the base case and
one of the induction branches were resolved automatically by PROVE REFINE-

MENT, and these remaining goals were easily discharged with TRY SIMP.

4 Strategies for forward simulation proofs

In this section, we present the strategies we have developed for proving forward
simulations. We illustrate the application of these strategies by proving time
bounds for a failure detector and for a two process race system.
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4.1 Design of the forward simulation strategies

We have developed two generic strategies for aiding forward simulation proofs:
PROVE FWD SIM and FWD SIM ACTION REC. These strategies use new sub-
strategies together with some of the substrategies discussed in the previous
section. PROVE FWD SIM is similar to PROVE REFINEMENT in that it first
breaks down a forward simulation theorem (Figure 4) into its base case and
induction step, and then splits the induction step into cases for the individ-
ual action subtypes of the concrete automaton. The FWD SIM ACTION REC

strategy is meant to be applied to the individual action branches produced
by PROVE FWD SIM; it is used to prove the A.invisible seq trans or the
A.time seq trans predicates (see Section 2.4) in the individual action branches.
This strategy takes an action sequence σ = a1, a2, . . . , an, a starting state s1,
and a known target state s2, and produces the following set of subgoals:

• s2 = trans(an, trans(an−1, trans(an−2, . . . , trans(a1, s1) . . .))),

• For each action ai in σ, ai is not visible, and

• For each i ∈ 1, . . . , n, ai is enabled in trans(ai−1, trans(ai−2, . . . , s) . . .).

The strategy then discharges some of these subgoals by expanding definitions
(e.g., visible and enabled) and then simplifying. The remaining non-trivial
subgoals are then presented to the user with properly labeled sequents. To
illustrate the details of operation of these strategies, we next present another
case study: a failure detector algorithm.

4.2 Proving a time bound in a failure detector

This case study uses a forward simulation relation to prove the time bound of
a failure detector taken from [8]. The failure detector implementation consists
of three components: (1) a sending process P which sends a heartbeat message
every u1 time units as long as it has not failed, (2) a timed channel C which
delivers to T each of the messages sent by P within b time units after it
is sent, and (3) a timeout process T which performs a timeout action if it
does not receive any message over a time interval longer than u2 units. The
sending process P fails when an externally controlled fail action occurs and
stops sending the messages. As a result of the timeout action, the process T
suspects P to have failed. The implementation is modeled as an automaton
called TIMEOUT with the two visible actions timeout and fail.

Assuming u2 > u1 + b, we are interested in proving two properties: (a)
safety: T suspects P implies that P has really failed, and (b) timeliness: if P
fails then it is suspected by T within b+u2 time units. The safety property (a)
is an invariant of TIMEOUT, and can be proved using the invariant strategies
of TAME. The timeliness property (b) is modeled as a simple specification
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MC� THEORY � automaton ��� TIMEOUT�decls
MA� THEORY � automaton ��� TO�SPEC�decls

rel�s�C� MC�states� s�A� MA�states��bool �
failed�s�C� � failed�s�A� AND
suspected�s�C� � suspected�s�A� AND
now�s�C� � now�s�A� AND
IF �not failed�s�A��

THEN inftime	�last�timeout�s�A��
ELSE IF nonemptyqueue	�queue�s�C��

THEN last�timeout�s�A� �� last�deadline�s�C� 
 u��
ELSE last�timeout�s�A� �� t�clock�s�C�

ENDIF
ENDIF

Fig. 11. The simulation relation for the failure detector.

automaton TO SPEC which has just two actions, fail and timeout, in addi-
tion to the time passage action. The automaton TO SPEC simply triggers a
timeout action within u2 +b time units of the occurrence of a fail action. To
show that TIMEOUT implements TO SPEC, we proved that the relation rel

between TIMEOUT and TO SPEC defined in Figure 11 is a forward simula-
tion relation. In this definition, TIMEOUT is represented by MC, TO SPEC
is represented by MA, last timeout is the deadline for the timeout action of
TO SPEC, last deadline is the deadline for the delivery of the last message
in the channel, and t clock is the deadline for timing out when no interim
message is received.

4.3 Applying forward simulation strategies to TIMEOUT

For proving the TIMEOUT/TO SPEC simulation property, we applied the
PROVE FWD SIM strategy to the forward simulation theorem. This applica-
tion produces a base case subgoal and one subgoal for each of the five actions
of MC: nu, send, receive, fail, and timeout. The Base case is handled
by SETUP REF BASE. For each action a of MC, the subgoals produced by
PROVE FWD SIM correspond to proving that the relation rel is preserved,
that is (in the notation used in the forward simulation property theory in
Figure 4 on page 8), (1) there exists an action sequence of MA starting from
s A that leads to the state s3 A, and (2) given that rel(s C, s A) holds,
rel(s1 C, s3 A) also holds. The second subgoal is common to all actions,
but the subgoals produced for proving (1) depend on the type of the action a.
For example, the time passage action nu produces a time seq trans subgoal
(see Figure 12), the invisible action send produces an invisible seq trans

subgoal, and the visible action timeout produces two invisible seq trans

subgoals and two additional subgoals to show that the timeout action of MA
takes s1 A to s2 A.
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timeout�fw�simulation�thm�� �
��� Case nu�t�

��	
�finduct��
MC�reachable�s�C�

���
�finduct��
MA�reachable�s�A�

���
�finduct��
ref�s�C
 s�A�

��
�finduct��
MC�enabled�nu�t�
 s�C�

���
�finduct��
s	�C � MC�trans�nu�t�
 s�C�

��������
�	
�finduct��

EXISTS �s��A� MA�states�� MA�time�seq�trans�s�A
 s��A
 dur�t��
� ref�s	�C
 s��A�

timeout�fw�simulation�thm�� �
��� Case send�m�
���
��
�finduct��

MC�enabled�send�m�
 s�C�
���
�finduct��

s	�C � MC�trans�send�m�
 s�C�
��������

�	
�finduct��
EXISTS �s��A� MA�states��

MA�invisible�seq�trans�s�A
 s��A� � ref�s	�C
 s��A�

timeout�fw�simulation�thm�� �
��� Case timeout
���
��
�finduct��

MC�enabled�timeout
 s�C�
���
�finduct��

s	�C � MC�trans�timeout
 s	�C�
��������

�	
�finduct��
EXISTS �s	�A
 s��A
 s��A� MA�states��

MA�invisible�seq�trans�s�A
 s	�A�
� MA�invisible�seq�trans�s��A
 s��A� � ref�s	�C
 s��A�
� MA�enabled�timeout
 s	�A� � MA�trans�timeout
 s	�A� � s��A

Fig. 12. Sequents produced by PROVE FWD SIM for the time passage action nu, invisible
action send, and visible action timeout.

For each action, showing that the post-states are related means that we
have to show that the four conjuncts in rel are satisfied. This leads to four
subgoals in each action branch. Some of these subgoals are trivial; others
require the application of some previously proved invariants. The last subgoal
requires us to prove inequalities involving real expressions; for this, we have
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found the Field [13] and the Manip [5] strategy packages to be useful.

4.4 Proving time bounds for two process race

The second case study in which we applied our strategies to prove time bounds
through a forward simulation relation is the two process race system described
in [10], which we will call RACE. The automaton RACE models two processes
running in parallel. The process main updates the counter or produces a
report action within every time interval [a1, a2]. The second process produces
a set action within the time interval [b1, b2]. The counter is initially set to
zero, and it is incremented by main until the occurrence of the set action,
from which point onward, the counter is decremented. Once the main process
counts down to zero a report action is triggered.

The property of interest here is the upper and lower time bounds on the
occurrence of the report action. The upper bound is given by b2+a2+b2a2/a1.
The intuition behind this bound as follows: in order to maximize the value
of the counter until the set action occurs, the main process should increment
counter every a1 time. Thus, the value of counter when the set action occurs
is b2/a1. Thereafter, the maximum time taken to decrement counter down to
zero is a2b2/a1. The latest time when the set action occurs is b2, and therefore
the upper time bound for report is a2 + b2 + a2b2/a1. Reasoning similarly,
one can show that the lower bound for the report action is b1 +(b1−a2)a1/a2

if a2 < b1, and a1 otherwise. These time bounds on report are specified
as a simple abstract automaton RACE SPEC which triggers a report action
within the above time bounds.

The forward simulation relation rel used to prove that RACE implements
RACE SPEC is shown in Figure 13. In the definition of rel, first action
and last action denote the lower and the upper bounds on the time of occur-
rence of action, respectively. This simulation relation is more complex than
that for the TIMEOUT/TO SPEC example because (a) it captures both the
upper and the lower time bounds, and (b) the relation between the states
differs depending on whether or not flag has been set by the set action.
The structure of the proof is similar to that in the TIMEOUT/TO SPEC
example, and so our high level PROVE FWD SIM strategy successfully breaks
up the simulation proof into subgoals for the individual actions. Applying
FWD SIM ACTION REC with the proper arguments instantiates and
simplifies the action branches. Generally, each action branch leads to six sub-
goals corresponding to the six high level conjuncts in the simulation relation,
but the trivial subgoals (e.g., first two subgoals) are discharged automatically
by the strategy. The remaining subgoals required the application of previously
proved invariants and reasoning about inequalities involving real expressions,
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MC� THEORY � automaton ��� RACEdecls
MA� THEORY � automaton ��� RACE�SPEC�decls

rel�s�C� MC�states� s�A� MA�states��bool �

now�s�A� � now�s�C� AND

reported�s�A� � reported�s�C� AND

NOT flag�s�C� AND last�main�s�C� 	 first�set�s�C�
IMPLIES first�report�s�A� 	� first�set�s�C� 

�count�s�C� 
 �first�set�s�C� � last�main�s�C���a��a� AND

flag�s�C� or last�main�s�C� �� first�set�s�C�
IMPLIES first�report�s�A� 	� first�main�s�C� 
 count�s�C�a� AND

NOT flag�s�C� AND first�main�s�C� 	� last�set�s�C�
IMPLIES last�report�s�A� �� last�set�s�C� 


�count�s�C� 
 � 
 �last�set�s�C� � first�main�s�C���a��a� AND

NOT reported�s�C� AND �flag�s�C� OR first�main�s�C� � last�set�s�C��
IMPLIES last�report�s�A� �� last�main�s�C� 
 count�s�C�a�

Fig. 13. Simulation relation for RACE and RACE SPEC.

in which we found the Field and the Manip strategies to be useful.

5 Related work

A metatheory for I/O automata, based on which generic definitions of invari-
ant and abstraction properties are possible, has been developed in Isabelle by
Müller [14], who also developed an associated verification framework. Exam-
ple proofs of forward simulation have been done for at least simple example
automata using this framework; it is not clear to what extent uniform Isabelle
tactics are employed. PVS has been used by others to do abstraction proofs,
and in fact a refinement proof for TIP and SPEC was mechanized by Devillers
et al. [4]. However, to our knowledge, no one has developed “generic” PVS
strategies to support proving abstraction properties with PVS.

Our work is related to the tools being developed for the TIOA project [7,6].
The TIOA to PVS translator, which is currently under development, produces
PVS specifications of timed (or untimed) I/O automata in the style described
in this paper. The translator and our strategies are designed to mask the
details of the PVS theorem prover, so that the user can specify a TIOA and
prove its properties in PVS without learning the details of the PVS language
and prover.

6 Conclusions and future work

We have developed supporting PVS theories and templates for abstraction
proof strategies, and added them to TAME. The supporting theories include
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a set of abstraction property theories that are being collected into a library,
and generic automaton theories that serve as theory types for theory parame-
ters to our property theories. For each abstraction property theory, there is a
template to allow the abstraction property to be instantiated as a (proposed)
theorem that relates two particular automata. Building on this structure,
we have added both a reusable PVS weak refinement strategy and a reusable
forward simulation strategy to TAME, and have applied these strategies to ex-
amples. In the example weak refinement proofs we have done so far, previously
existing TAME strategies provide sufficient proof steps for interactively com-
pleting the refinement proofs. While previously existing TAME proof steps
were useful in completing the forward simulation proofs, the TAME steps had
to be supplemented, for example with proof steps from the Field [13] and
Manip [5] strategy packages.

Our approach to developing strategies for abstraction proofs is geared to-
wards theorem provers that support tactic-style interactive proving. In theo-
rem proving systems that allow a definition of an automaton type, an approach
to developing such strategies that is not based on templates may be possible.
Because we cannot expect to develop strategies that will do arbitrary abstrac-
tion proofs fully automatically, a major goal for us is to design our strategies
to support user-friendly interactive proving. A PVS feature that facilitates
making both interaction with the prover and understanding the significance
of saved proofs easier is support for comments and formula labels. Thus, a
challenge for other theorem proving systems is to find ways to support ease
of understanding during and after the proof process equivalent to what we
provide using PVS.

As with any other product of a development project, our strategies will re-
quire more testing, tuning, and optimization after the initial conceptual phase
of development whose results we have described in this paper. We have begun
work on developing new strategies useful for (interactively) completing proofs
of action cases. Much of this is currently being undertaken within the TIOA
project. We also plan to add proof support for other abstraction properties
and to continue adding new strategies for interactive proof completion.
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