24 research outputs found

    Signal processing with optical delay line filters for high bit rate transmission systems

    Get PDF
    In den letzten Jahrzehnten ist das globale Kommunikationssystem in einem immer größerem Maße ein integraler Bestandteil des täglichen Lebens geworden. Optische Kommunikationssysteme sind die technologische Basis für diese Entwicklung. Nur Fasern können die riesige benötigte Bandbreite bereitstellen. Während für die ersten optischen Übertragungssysteme die Faser als "flacher" Kanal betrachtet werden konnte, machen Wellenlängenmultiplex und steigende Übertragungsraten die Einbeziehung von immer mehr physikalischen Effekten notwendig. Bei einer Erhöhung der Kanaldatenrate auf 40 Gbit/s und mehr ist die statische Kompensation von chromatischer Dispersion nicht mehr ausreichend. Die intrinsische Toleranz der Modulationsformate gegenüber Dispersion nimmt quadratisch mit der Symbolrate ab. Daher können beispielsweise durch Umwelteinflüsse hervorgerufene Dispersionsschwankungen die Dispersionstoleranz der Modulationsformate überschreiten. Dies macht eine adaptive Dispersionskompensation notwendig, was gleichzeitig auch Dispersionsmonitoring erfordert, um den adaptiven Kompensator steuern zu können. Vorhandene Links können mit Restdispersionskompensatoren ausgestattet werden, um sie für Hochgeschwindigkeitsübertragungen zu ertüchtigen. Optische Kompensationstechniken sind unabhängig von der Kanaldatenrate. Daher wird eine Erhöhung der Datenrate problemlos unterstützt. Optische Kompensatoren können WDM-fähig gebaut werden, um mehrere Kanäle auf einmal zu entzerren. Das Buch beschäftigt sich mit optischen Delay-Line-Filtern als eine Klasse von optischen Kompensatoren. Die Filtersynthese von solchen Delay-Line-Filtern wird behandelt. Der Zusammenhang zwischen optischen Filtern und digitalen FIR-Filtern mit komplexen Koeffizienten im Zusammenhang mit kohärenter Detektion wird aufgezeigt. Iterative und analytische Methoden, die die Koeffizienten für dispersions- und dispersions-slope-kompensierende Filter produzieren, werden untersucht. Genauso wichtig wie die Kompensation von Dispersion ist die Schätzung der Dispersion eines Signals. Mit Delay-Line-Filtern können die Restseitenbänder eines Signals genutzt werden, um die Dispersion zu messen. Alternativ kann nichtlineare Detektion angewandt werden, um die Pulsverbreiterung, die hauptsächlich von der Dispersion herrührt, zu schätzen. Mit gemeinsamer Dispersionskompensation und Dispersionsmonitoring können Dispersionskompensatoren auf die Signalverzerrungen eingestellt werden. Spezielle Eigenschaften der Filter zusammen mit der analytischen Beschreibung können genutzt werden, um schnelle und zuverlässige Steueralgorithmen zur Filtereinstellung bereitzustellen. Schließlich wurden Prototypen derartiger faseroptischen Kompensatoren von chromatischer Dispersion und Dispersions-Slope hergestellt und charakterisiert. Die Einheiten und ihr Systemverhalten wird gezeigt und diskutiert.Over the course of the past decades, the global communication system has become a central part of people's everyday lives. Optical communication systems are the technological basis for this development. Only fibers can provide the huge bandwidth that is required. Where the fiber could be regarded as a flat channel for the first optical transmission systems wavelength multiplexing and increasing line rates made it necessary to take more and more physical effects into account. When the line rates are increased to 40 Gbit/s and higher static chromatic dispersion compensation is not enough. The modulation format's intrinsic tolerance for dispersion decreases quadratically with the symbol rate. Thus, environmentally induced chromatic dispersion fluctuations may exceed the dispersion tolerance of the modulation formats. This makes an adaptive dispersion compensation necessary implying also the need for a monitoring scheme to steer the adaptive compensator. Legacy links that are CD-compensated by DCFs can be upgraded with residual dispersion compensators to make them ready for high speed transmission. Optical compensation is independent from the line rate. Hence, increasing the data rates is inherently supported. Optical compensators can be built WDM ready compensating multiple channels at once. The book deals with optical delay line filters as one class of optical compensators. The filter synthesis of such delay line filters is addressed. The connection between optical filters and digital FIR filters with complex coefficients that are used in conjunction with coherent detection could be shown. Iterative and analytical methods that produce the coefficients for dispersion (and also dispersion slope) compensating filters are researched. As important as the compensation of dispersion is the estimation of the dispersion of a signal. Using delay line filters, the vestigial sidebands of a signal can be used to measure the dispersion. Alternatively, nonlinear detection can be used to estimate the pulse broadening which is caused mainly by dispersion. With dispersion compensation and dispersion monitoring, dispersion compensators can be adapted to the signal's impairment. Special properties of the filter in conjunction with an analytical description can be used to provide a fast and reliable control algorithm for setting the filter to a given dispersion and centering it on a signal. Finally, prototypes of such fiber optic chromatic dispersion and dispersion slope compensation filters were manufactured and characterized. The device and system characterization of the prototypes is presented and discussed

    Guidage magnétique par champs de dipôles pour l’administration ciblée d’agents thérapeutiques

    Get PDF
    Les chimiothérapies modernes utilisées pour le traitement des cancers consistent souvent à l’injection systémique de molécules toxiques dont généralement une infime partie atteint la tumeur. Pour augmenter l’efficacité de ces traitements et réduire leurs effets secondaires, une solution consiste à guider magnétiquement des agents thérapeutiques afin de les diriger dans le réseau vasculaire, à partir du point d’injection directement vers la zone à traiter. Ceci peut être accompli en appliquant des champs et des gradients magnétiques de manière contrôlée sur les agents, qui sont alors soumis à des forces de propulsion permettant de les attirer à travers les bifurcations artérielles désirées. Pour le guidage de micro-agents, cette approche requiert des champs et des gradients magnétiques forts. Le champ permet de magnétiser les agents et doit idéalement être suffisamment fort pour les amener à saturation magnétique. Les gradients (variations spatiales du champ) peuvent alors induire des forces magnétiques de propulsion, mais doivent atteindre une certaine amplitude pour que ces forces soient suffisantes. Avec les limites technologiques actuelles, il est difficile de rencontrer ces deux critères pour le guidage de micro-agents à l’échelle humaine. Dans les tissus profonds, les méthodes existantes sont généralement limitées à des champs de <0.1T et des gradients de <400 mT/m, ou peuvent générer un champ assez fort pour obtenir une magnétisation à saturation mais au détriment de gradients faibles (e.g. <100mT/m ou typiquement <40 mT/m). Dans le cadre de ce projet de recherche, une nouvelle méthode de guidage magnétique, baptisée guidage par champs de dipôles, ou Dipole Field Navigation (DFN), est proposée et étudiée pour surmonter les limitations des méthodes précédentes pour le guidage de micro-agents. Contrairement aux autres méthodes de guidage magnétique, DFN bénéficie à la fois d’un champ magnétique fort et de gradients d’amplitudes élevées dans les tissus profonds chez l’humain. Ceci est accompli à l’aide de corps ferromagnétiques précisément positionnés autour du patient à l’intérieur d’un appareil clinique d’imagerie par résonance magnétique. Ces appareils génèrent un puissant champ magnétique, typiquement de 1.5-3 T, qui est suffisant pour atteindre la saturation magnétique des agents. Les corps ferromagnétiques ont pour effet de distordre le champ de l’appareil de sorte que des gradients excédant 400mT/m peuvent être générés à une profondeur de 10 cm dans le patient. Grâce aux distorsions complexes du champ autour de ceux-ci, il est théoriquement possible d’induire, dans une certaine mesure, les forces magnétiques nécessaires au guidage des agents le long de trajectoires prédéfinies dans le réseau vasculaire. Le paramétrage adéquat d’une disposition de corps ferromagnétiques, dont le nombre requis est a priori inconnu, est toutefois complexe et doit être effectué en fonction de la trajectoire vasculaire désirée, spécifique à chaque patient. Différentes contraintes reliées à l’environnement d’IRM, dont l’espace restreint à l’intérieur de l’appareil, doivent également être prises en compte. Ainsi, des modèles et algorithmes d’optimisation permettant de résoudre ce problème sont développés et présentés. Le fonctionnement de la méthode est validé in vitro par le guidage de particules à travers des réseaux ayant jusqu’à trois bifurcations consécutives avec un taux de ciblage supérieur à 90%. Il est démontré que la taille et la forme des corps ferromagnétiques peuvent être variées afin d’augmenter les capacités de génération de gradients. En particulier, les formes de disque et de demie-sphère sont identifiées comme étant les plus efficaces. Par ailleurs, l’environnement d’IRM n’étant typiquement pas compatible avec la présence de matériaux magnétiques, les effets des corps ferromagnétiques sur l’imagerie sont étudiés. Il est démontré que l’imagerie demeure possible, dans une certaine mesure malgré les distorsions, dans des régions spécifiques autour d’une sphère magnétisée à l’intérieur de l’appareil. La qualité des images obtenues dans ces conditions est suffisante pour permettre de valider le succès du ciblage. Ainsi, des vérifications périodiques du déroulement de l’intervention seraient possibles en éloignant momentanément le ou les corps ferromagnétiques du patient. D’autre part, à cause des forces magnétiques exercées sur ceux-ci, le nombre et la taille des corps ferromagnétiques doivent être limités afin de faciliter leur insertion et leur positionnement sécuritaire dans l’appareil. Bien que certaines trajectoires puissent nécessiter plusieurs corps ferromagnétiques de grande taille, un certain compromis doit donc être recherché par rapport à la qualité des gradients générés. Enfin, le potentiel de la méthode pour le guidage de microagents dans les tissus profonds chez l’humain est évalué en utilisant un modèle du réseau vasculaire du foie d’un patient. Les résultats indiquent que, pour des trajectoires vasculaires multi-bifurcations relativement complexes, un compromis est inévitable entre les amplitudes et la précision angulaire des gradients générés. Par exemple, des gradients d’environ 150mT/m ont été obtenus pour le guidage à travers trois bifurcations consécutives dans ce modèle, mais avec une erreur angulaire moyenne d’environ 20_. Finalement, les capacités de DFN à générer des gradients forts dépendent de nombreux paramètres, comme la complexité et la profondeur de la trajectoire vasculaire visée, mais peuvent, selon les conditions, surpasser grandement celles des méthodes existantes pour le guidage de micro-agents dans les tissus profonds. À la lumière des résultats présentés dans cette thèse, le potentiel de la méthode est prometteur et justifie la poursuite du projet, notamment vers la réalisation des premiers essais in vivo. À ce titre, différentes pistes de recherches et de travaux futurs sont discutées.----------ABSTRACT Modern chemotherapies used in cancer treatment often involve the systemic administration of toxic molecules, of which usually a tiny fraction reaches the tumor. To increase the efficacy of these treatments while significantly reducing their secondary effects, a solution consists in magnetically guiding therapeutic agents in the vascular network, from an injection point directly towards the diseased site. This can be accomplished by applying controlled combinations of magnetic fields and gradients on the agents, which are then subjected to propulsive directional forces that can be used to steer them through the desired arterial bifurcations. For the navigation of micro-agents, this approach requires both a strong magnetic field and high gradients. The field strength is required to magnetize the agents and is ideally high enough to bring them at saturation magnetization. The gradients (spatial variations of the field) can then induce magnetic propulsion forces, but must reach a certain magnitude so that these forces are sufficient. Because of current technological limitations, it is challenging to meet both criteria for the navigation of micro-agents at the human scale. In deep tissues, current methods are in fact usually limited to <0.1T fields and <400mT/m gradients, or can provide the field to reach saturation magnetization but at the expense of weak gradients (e.g. <100mT/m or typically <40 mT/m). In this research project, a new method dubbed Dipole Field Navigation (DFN) is proposed and studied to overcome the limitations of existing magnetic navigation methods for guiding micro-agents. Unlike other methods, DFN can provide both a strong magnetic field and high gradients in deep tissues for whole-body interventions. This is achieved by precisely positioning ferromagnetic cores around the patient inside a clinical magnetic resonance imaging scanner. Conventional scanners generate a strong magnetic field, typically of 1.5-3 T, which is sufficient to bring the agents at saturation magnetization. The ferromagnetic cores distort the scanner’s field such that gradients exceeding 400mT/m can be generated at a 10 cm depth inside the patient. Due to the complex distortion patterns around the cores, it is theoretically possible to induce, to a certain extent, the magnetic forces required for navigating agents along predefined vascular routes. The parameterization of core configurations, in which the required number of cores is a priori unknown, is however complex and must be performed according to the specific vasculature of a given patient. Several constraints related to the MRI environment must also be considered, such as the limited space inside the scanner. Therefore, models and optimization algorithms are developed and presented for solving this problem. The feasibility of the method is validated in vitro by guiding particles through up to three consecutive bifurcations, achieving a targeting efficiency of over 90%. It is shown that the size and shape of the cores can be varied to increase the capabilities of the method for generating gradients. In particular, discs and hemispheres are shown to be the most effective shapes. Moreover, the MRI environment typically no being compatible with the presence of magnetic materials, the effects of the cores on imaging are studied. It is shown that, despite distortions, imaging is still possible, to a certain extent, in specific regions around a magnetized sphere placed in the scanner. The images obtained in these conditions are of sufficient quality for targeting assessment. Thus, periodic validations of the procedure could be achieved by momentarily moving the cores away from the patient. On another hand, due to the potentially strong magnetic forces exerted on the cores, their number and sizes must be limited to ensure their safe insertion and positioning in the scanner. Consequently, although the navigation in some vascular routes may require several large ferromagnetic cores, a certain compromise must be made with respect to the quality of the gradients generated. Finally, the potential of the method for guiding micro-agents in a human vasculature in deep tissues is evaluated using the vascular model of a patient liver. The results indicate that, for relatively complex vascular routes having multiple bifurcations, a compromise is also required between the amplitudes and the angular precision of the gradients. For example, gradient strengths around 150mT/m were obtained for routes having three consecutive bifurcations in this model, but with an average angular error of about 20_. Overall, the capabilities of DFN for generating strong gradients depend on several parameters, such as the complexity and depth of the desired vascular route, but can in a range of cases greatly exceed those achievable by previous methods for the navigation of micro-agents in deep tissues. In view of the results presented in this thesis, the promising potential of DFN motivates the continuation of this project, in particular towards the first in vivo experiments. As such, different avenues of research and future works are discussed

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Integrated Optical Fiber Sensor for Simultaneous Monitoring of Temperature, Vibration, and Strain in High Temperature Environment

    Full text link
    Important high-temperature parts of an aero-engine, especially the power-related fuel system and rotor system, are directly related to the reliability and service life of the engine. The working environment of these parts is extremely harsh, usually overloaded with high temperature, vibration and strain which are the main factors leading to their failure. Therefore, the simultaneous measurement of high temperature, vibration, and strain is essential to monitor and ensure the safe operation of an aero-engine. In my thesis work, I have focused on the research and development of two new sensors for fuel and rotor systems of an aero-engine that need to withstand the same high temperature condition, typically at 900 °C or above, but with different requirements for vibration and strain measurement. Firstly, to meet the demand for high temperature operation, high vibration sensitivity, and high strain resolution in fuel systems, an integrated sensor based on two fiber Bragg gratings in series (Bi-FBG sensor) to simultaneously measure temperature, strain, and vibration is proposed and demonstrated. In this sensor, an L-shaped cantilever is introduced to improve the vibration sensitivity. By converting its free end displacement into a stress effect on the FBG, the sensitivity of the L-shaped cantilever is improved by about 400% compared with that of straight cantilevers. To compensate for the strain sensitivity of FBGs, a spring-beam strain sensitization structure is designed and the sensitivity is increased to 5.44 pm/με by concentrating strain deformation. A novel decoupling method ‘Steps Decoupling and Temperature Compensation (SDTC)’ is proposed to address the interference between temperature, vibration, and strain. A model of sensing characteristics and interference of different parameters is established to achieve accurate signal decoupling. Experimental tests have been performed and demonstrated the good performance of the sensor. Secondly, a sensor based on cascaded three fiber Fabry-Pérot interferometers in series (Tri-FFPI sensor) for multiparameter measurement is designed and demonstrated for engine rotor systems that require higher vibration frequencies and greater strain measurement requirements. In this sensor, the cascaded-FFPI structure is introduced to ensure high temperature and large strain simultaneous measurement. An FFPI with a cantilever for high vibration frequency measurement is designed with a miniaturized size and its geometric parameters optimization model is established to investigate the influencing factors of sensing characteristics. A cascaded-FFPI preparation method with chemical etching and offset fusion is proposed to maintain the flatness and high reflectivity of FFPIs’ surface, which contributes to the improvement of measurement accuracy. A new high-precision cavity length demodulation method is developed based on vector matching and clustering-competition particle swarm optimization (CCPSO) to improve the demodulation accuracy of cascaded-FFPI cavity lengths. By investigating the correlation relationship between the cascaded-FFPI spectral and multidimensional space, the cavity length demodulation is transformed into a search for the highest correlation value in space, solving the problem that the cavity length demodulation accuracy is limited by the resolution of spectral wavelengths. Different clustering and competition characteristics are designed in CCPSO to reduce the demodulation error by 87.2% compared with the commonly used particle swarm optimization method. Good performance and multiparameter decoupling have been successfully demonstrated in experimental tests

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out

    Human Machine Interaction

    Get PDF
    In this book, the reader will find a set of papers divided into two sections. The first section presents different proposals focused on the human-machine interaction development process. The second section is devoted to different aspects of interaction, with a special emphasis on the physical interaction
    corecore