21 research outputs found

    PROPHECY—a database for high-resolution phenomics

    Get PDF
    The rapid recent evolution of the field phenomics—the genome-wide study of gene dispensability by quantitative analysis of phenotypes—has resulted in an increasing demand for new data analysis and visualization tools. Following the introduction of a novel approach for precise, genome-wide quantification of gene dispensability in Saccharomyces cerevisiae we here announce a public resource for mining, filtering and visualizing phenotypic data—the PROPHECY database. PROPHECY is designed to allow easy and flexible access to physiologically relevant quantitative data for the growth behaviour of mutant strains in the yeast deletion collection during conditions of environmental challenges. PROPHECY is publicly accessible at http://prophecy.lundberg.gu.se

    PROPHECY—a yeast phenome database, update 2006

    Get PDF
    Connecting genotype to phenotype is fundamental in biomedical research and in our understanding of disease. Phenomics—the large-scale quantitative phenotypic analysis of genotypes on a genome-wide scale—connects automated data generation with the development of novel tools for phenotype data integration, mining and visualization. Our yeast phenomics database PROPHECY is available at . Via phenotyping of 984 heterozygous diploids for all essential genes the genotypes analysed and presented in PROPHECY have been extended and now include all genes in the yeast genome. Further, phenotypic data from gene overexpression of 574 membrane spanning proteins has recently been included. To facilitate the interpretation of quantitative phenotypic data we have developed a new phenotype display option, the Comparative Growth Curve Display, where growth curve differences for a large number of mutants compared with the wild type are easily revealed. In addition, PROPHECY now offers a more informative and intuitive first-sight display of its phenotypic data via its new summary page. We have also extended the arsenal of data analysis tools to include dynamic visualization of phenotypes along individual chromosomes. PROPHECY is an initiative to enhance the growing field of phenome bioinformatics

    Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignocellulosic materials are abundant and among the most important potential sources for bioethanol production. Although the pretreatment of lignocellulose is necessary for efficient saccharification and fermentation, numerous by-products, including furan derivatives, weak acids, and phenolic compounds, are generated in the pretreatment step. Many of these components inhibit the growth and fermentation of yeast. In particular, vanillin is one of the most effective inhibitors in lignocellulose hydrolysates because it inhibits fermentation at very low concentrations. To identify the genes required for tolerance to vanillin, we screened a set of diploid yeast deletion mutants, which are powerful tools for clarifying the function of particular genes.</p> <p>Results</p> <p>Seventy-six deletion mutants were identified as vanillin-sensitive mutants. The numerous deleted genes in the vanillin-sensitive mutants were classified under the functional categories for 'chromatin remodeling' and 'vesicle transport', suggesting that these functions are important for vanillin tolerance. The cross-sensitivity of the vanillin-sensitive mutants to furan derivatives, weak acids, and phenolic compounds was also examined. Genes for ergosterol biosynthesis were required for tolerance to all inhibitory compounds tested, suggesting that ergosterol is a key component of tolerance to various inhibitors.</p> <p>Conclusion</p> <p>Our analysis predicts that vanillin tolerance in <it>Saccharomyces cerevisiae </it>is affected by various complicated processes that take place on both the molecular and the cellular level. In addition, the ergosterol biosynthetic process is important for achieving a tolerance to various inhibitors. Our findings provide a biotechnological basis for the molecular engineering as well as for screening of more robust yeast strains that may potentially be useful in bioethanol fermentation.</p

    Evolutionary constraints on yeast protein size

    Get PDF
    BACKGROUND: Despite a strong evolutionary pressure to reduce genome size, proteins vary in length over a surprisingly wide range also in very compact genomes. Here we investigated the evolutionary forces that act on protein size in the yeast Saccharomyces cerevisiae utilizing a system-wide bioinformatics approach. Data on yeast protein size was compared to global experimental data on protein expression, phenotypic pleiotropy, protein-protein interactions, protein evolutionary rate and biochemical classification. RESULTS: Comparing the experimentally determined abundance of individual proteins, highly expressed proteins were found to be consistently smaller than lowly expressed proteins, in accordance with the biosynthetic cost minimization hypothesis. Yeast proteins able to maintain a high expression level despite a large size tended to belong to a very distinct set of protein families, notably nuclear transport and translation initiation/elongation. Large proteins have significantly more protein-protein interactions than small proteins, suggesting that a requirement for multiple interaction domains may constitute a positive selective pressure for large protein size in yeast. The higher frequency of protein-protein interactions in large proteins was not accompanied by a higher phenotypic pleiotropy. Hence, the increase in interactions may not reflect an increase in function differentiation. Proteins of different sizes also evolved at similar rates. Finally, whereas the biological process involved was found to have little influence on protein size the biochemical activity exerted by the protein represented a dominant factor. More than one third of all biochemical activity classes were enriched in one or more size intervals. CONCLUSION: In yeast, there is an inverse relationship between protein size and protein expression such that highly expressed proteins tend to be of smaller size. Also, protein size is moderately affected by protein connectivity and strongly affected by biochemical activity. Phenotypic pleiotropy does not seem to affect protein size

    Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays

    Get PDF
    BACKGROUND: Genome-wide mutant strain collections have increased demand for high throughput cellular phenotyping (HTCP). For example, investigators use HTCP to investigate interactions between gene deletion mutations and additional chemical or genetic perturbations by assessing differences in cell proliferation among the collection of 5000 S. cerevisiae gene deletion strains. Such studies have thus far been predominantly qualitative, using agar cell arrays to subjectively score growth differences. Quantitative systems level analysis of gene interactions would be enabled by more precise HTCP methods, such as kinetic analysis of cell proliferation in liquid culture by optical density. However, requirements for processing liquid cultures make them relatively cumbersome and low throughput compared to agar. To improve HTCP performance and advance capabilities for quantifying interactions, YeastXtract software was developed for automated analysis of cell array images. RESULTS: YeastXtract software was developed for kinetic growth curve analysis of spotted agar cultures. The accuracy and precision for image analysis of agar culture arrays was comparable to OD measurements of liquid cultures. Using YeastXtract, image intensity vs. biomass of spot cultures was linearly correlated over two orders of magnitude. Thus cell proliferation could be measured over about seven generations, including four to five generations of relatively constant exponential phase growth. Spot area normalization reduced the variation in measurements of total growth efficiency. A growth model, based on the logistic function, increased precision and accuracy of maximum specific rate measurements, compared to empirical methods. The logistic function model was also more robust against data sparseness, meaning that less data was required to obtain accurate, precise, quantitative growth phenotypes. CONCLUSION: Microbial cultures spotted onto agar media are widely used for genotype-phenotype analysis, however quantitative HTCP methods capable of measuring kinetic growth rates have not been available previously. YeastXtract provides objective, automated, quantitative, image analysis of agar cell culture arrays. Fitting the resulting data to a logistic equation-based growth model yields robust, accurate growth rate information. These methods allow the incorporation of imaging and automated image analysis of cell arrays, grown on solid agar media, into HTCP-driven experimental approaches, such as global, quantitative analysis of gene interaction networks

    酵母の単細胞フェノミクスに基づく抗菌薬のプロファイリング

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 大矢 禎一, 東京大学准教授 松本 直樹, 東京大学准教授 尾田 正二, 東京大学准教授 永田 晋治, 東京大学准教授 八代田 英樹University of Tokyo(東京大学

    Genome engineering for improved recombinant protein expression in Escherichia coli

    Get PDF
    corecore