8 research outputs found

    Optimisation of routing protocols for Wireless Mesh Networks (WMNs) to achieve higher quality of service for real time applications

    Get PDF
    The existing routing protocols for WMNs (Wireless Mesh Networks) are extensions of protocols originally designed for Mobile Ad-hoc Networks (MANETs) and perform sub-optimally for the mesh connectivity of WMNs which degrades their performance in terms of increased latency in packet delivery, packet drops and decreased network throughput. The proposed research, currently at its inception, would investigate into capacity and limitations of current WMN routing protocols with respect to wireless technologies, platforms and relevant standards in context of routing requirements of identified real-time applications, namely, the disaster management and tele-health applications. The research would optimise the existing routing protocols for WMNs for the proposed applications to achieve higher quality of service, reliability and security of data access to meet their specialist requirements. Wireless Mesh Networks (WMNs) are increasingly being incorporated in disaster management solutions for access to information of disaster situation to improve effectiveness of rescue services. Currently, the routing requirements of disaster solution using WMN has been researched in context of active research project, “iSurvival- Mobile Mesh Networks for Disaster Management” , which utilises specialist applications on smart phones of end-users in the disaster area to establish WMNs using available heterogeneous wireless technologies from 3G, Wi-Fi, Bluetooth and others. These WMNs provide resilient and reconfigurable digital infrastructures, with users’ smart phones acting as routers in the connected mesh networks to facilitate routing and forwarding of information in the disaster are

    Negotiation Support and Risk Reduction in Collaborative Networks

    Get PDF
    Part 2: Collaborative Enterprise NetworksInternational audienceIn face of the current economic turbulence, companies face new challenges. In order to respond to new business opportunities, it is crucial that companies attain strategic alliances so that they can obtain or maintain market competiveness. The formation of alliances and partnerships for collaborative problem solving is of extreme importance, being therefore essential to understand their structures and requirements. To overcome a number of difficulties that may appear in the formation of such alliances, it is necessary to properly model the elements that constitute the alliance agreements through a suitable negotiation support environment that besides the basic functionalities of data storage and alerts can also conduct the entire negotiation process making it traceable. In this context, this paper presents the main requirements of an electronic negotiation support environment in a collaborative network, identifies the main risk sources and drivers in collaborations, and analyses how a negotiation support system can help in reducing the potential risk in collaboration

    C-EMO: A Modeling Framework for Collaborative Network Emotions

    Get PDF
    Recent research in the area of collaborative networks is focusing on the social and organizational complexity of collaboration environments as a way to prevent technological failures and consequently contribute for the collaborative network’s sustainability. One direction is moving towards the need to provide “human-tech” friendly systems with cognitive models of human factors such as stress, emotion, trust, leadership, expertise or decision-making ability. In this context, an emotion-based system is being proposed with this thesis in order to bring another approach to avoid collaboration network’s failures and help in the management of conflicts. This approach, which is expected to improve the performance of existing CNs, adopts some of the models developed in the human psychology, sociology and affective computing areas. The underlying idea is to “borrow” the concept of human-emotion and apply it into the context of CNs, giving the CN players the ability to “feel emotions”. Therefore, this thesis contributes with a modeling framework that conceptualizes the notion of “emotion” in CNs and a methodology approach based on system dynamics and agent-based techniques that estimates the CN player’s “emotional states” giving support to decision-making processes. Aiming at demonstrating the appropriateness of the proposed framework a simulation prototype was implemented and a validation approach was proposed consisting of simulation of scenarios, qualitative assessment and validation by research community peers.Recentemente a área de investigação das redes colaborativas tem vindo a debruçar-se na complexidade social e organizacional em ambientes colaborativos e como pode ser usada para prevenir falhas tecnológicas e consequentemente contribuir para redes colaborativas sustentáveis. Uma das direcções de estudo assenta na necessidade de fornecer sistemas amigáveis “humano-tecnológicos” com modelos cognitivos de factores humanos como o stress, emoção, confiança, liderança ou capacidade de tomada de decisão. É neste contexto que esta tese propõe um sistema baseado em emoções com o objectivo de oferecer outra aproximação para a gestão de conflitos e falhas da rede de colaboração. Esta abordagem, que pressupõe melhorar o desempenho das redes existentes, adopta alguns dos modelos desenvolvidos nas áreas da psicologia humana, sociologia e affective computing. A ideia que está subjacente é a de “pedir emprestado” o conceito de emoção humana e aplicá-lo no contexto das redes colaborativas, dando aos seus intervenientes a capacidade de “sentir emoções”. Assim, esta tese contribui com uma framework de modelação que conceptualiza a noção de “emoção” em redes colaborativas e com uma aproximação de metodologia sustentada em sistemas dinâmicos e baseada em agentes que estimam os “estados emocionais” dos participantes e da própria rede colaborativa. De forma a demonstrar o nível de adequabilidade da framework de modelação proposta, foi implementado um protótipo de simulação e foi proposta uma abordagem de validação consistindo em simulação de cenários, avaliação qualitativa e validação pelos pares da comunidade científica

    Evolutionary Service Composition and Personalization Ecosystem for Elderly Care

    Get PDF
    Current demographic trends suggest that people are living longer, while the ageing process entails many necessities, calling for care services tailored to the individual senior’s needs and life style. Personalized provision of care services usually involves a number of stakeholders, including relatives, friends, caregivers, professional assistance organizations, enterprises, and other support entities. Traditional Information and Communication Technology based care and assistance services for the elderly have been mainly focused on the development of isolated and generic services, considering a single service provider, and excessively featuring a techno-centric approach. In contrast, advances on collaborative networks for elderly care suggest the integration of services from multiple providers, encouraging collaboration as a way to provide better personalized services. This approach requires a support system to manage the personalization process and allow ranking the {service, provider} pairs. An additional issue is the problem of service evolution, as individual’s care needs are not static over time. Consequently, the care services need to evolve accordingly to keep the elderly’s requirements satisfied. In accordance with these requirements, an Elderly Care Ecosystem (ECE) framework, a Service Composition and Personalization Environment (SCoPE), and a Service Evolution Environment (SEvol) are proposed. The ECE framework provides the context for the personalization and evolution methods. The SCoPE method is based on the match between the customer´s profile and the available {service, provider} pairs to identify suitable services and corresponding providers to attend the needs. SEvol is a method to build an adaptive and evolutionary system based on the MAPE-K methodology supporting the solution evolution to cope with the elderly's new life stages. To demonstrate the feasibility, utility and applicability of SCoPE and SEvol, a number of methods and algorithms are presented, and illustrative scenarios are introduced in which {service, provider} pairs are ranked based on a multidimensional assessment method. Composition strategies are based on customer’s profile and requirements, and the evolutionary solution is determined considering customer’s inputs and evolution plans. For the ECE evaluation process the following steps are adopted: (i) feature selection and software prototype development; (ii) detailing the ECE framework validation based on applicability and utility parameters; (iii) development of a case study illustrating a typical scenario involving an elderly and her care needs; and (iv) performing a survey based on a modified version of the technology acceptance model (TAM), considering three contexts: Technological, Organizational and Collaborative environment

    A decision framework to mitigate vendor lock-in risks in cloud (SaaS category) migration.

    Get PDF
    Cloud computing offers an innovative business model to enterprise IT services consumption and delivery. However, vendor lock-in is recognised as being a major barrier to the adoption of cloud computing, due to lack of standardisation. So far, current solutions and efforts tackling the vendor lock-in problem have been confined to/or are predominantly technology-oriented. Limited studies exist to analyse and highlight the complexity of vendor lock-in problem existing in the cloud environment. Consequently, customers are unaware of proprietary standards which inhibit interoperability and portability of applications when taking services from vendors. The complexity of the service offerings makes it imperative for businesses to use a clear and well understood decision process to procure, migrate and/or discontinue cloud services. To date, the expertise and technological solutions to simplify such transition and facilitate good decision making to avoid lock-in risks in the cloud are limited. Besides, little research investigations have been carried out to provide a cloud migration decision framework to assist enterprises to avoid lock-in risks when implementing cloud-based Software-as-a-Service (SaaS) solutions within existing environments. Such decision framework is important to reduce complexity and variations in implementation patterns on the cloud provider side, while at the same time minimizing potential switching cost for enterprises by resolving integration issues with existing IT infrastructures. Thus, the purpose of this thesis is to propose a decision framework to mitigate vendor lock-in risks in cloud (SaaS) migration. The framework follows a systematic literature review and analysis to present research findings containing factual and objective information, and business requirements for vendor-neutral interoperable cloud services, and/or when making architectural decisions for secure cloud migration and integration. The underlying research procedure for this thesis investigation consists of a survey based on qualitative and quantitative approaches conducted to identify the main risk factors that give rise to cloud computing lock-in situations. Epistemologically, the research design consists of two distinct phases. In phase 1, qualitative data were collected using open-ended interviews with IT practitioners to explore the business-related issues of vendor lock-in affecting cloud adoption. Whereas the goal of phase 2 was to identify and evaluate the risks and opportunities of lock-in which affect stakeholders’ decision-making about migrating to cloud-based solutions. In synthesis, the survey analysis and the framework proposed by this research (through its step-by-step approach), provides guidance on how enterprises can avoid being locked to individual cloud service providers. This reduces the risk of dependency on a cloud provider for service provision, especially if data portability, as the most fundamental aspect, is not enabled. Moreover, it also ensures appropriate pre-planning and due diligence so that the correct cloud service provider(s) with the most acceptable risks to vendor lock-in is chosen, and that the impact on the business is properly understood (upfront), managed (iteratively), and controlled (periodically). Each decision step within the framework prepares the way for the subsequent step, which supports a company to gather the correct information to make a right decision before proceeding to the next step. The reason for such an approach is to support an organisation with its planning and adaptation of the services to suit the business requirements and objectives. Furthermore, several strategies are proposed on how to avoid and mitigate lock-in risks when migrating to cloud computing. The strategies relate to contract, selection of vendors that support standardised formats and protocols regarding data structures and APIs, negotiating cloud service agreements (SLA) accordingly as well as developing awareness of commonalities and dependencies among cloud-based solutions. The implementation of proposed strategies and supporting framework has a great potential to reduce the risks of vendor lock-in

    Collaborative networks in the internet of services: 13th IFIP WG 5.5 working conference on virtual enterprises, PRO-VE 2012, Bournemouth, UK, October 2012: proceedings

    No full text
    This book constitutes the refereed proceedings of the 13th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2012, held in Bournemouth, UK, in October 2012. The 61 revised papers presented were carefully selected from numerous submissions. They provide a comprehensive overview of identified challenges and recent advances in various collaborative network (CN) domains and their applications with a particular focus on the Internet of Services. The papers are organized in topical sections on service enhanced products; service composition; collaborative ecosystems; platform requirements; cloud-based support; colllaborative business frameworks; service design; e-governance; collaboration in traditional sectors; collaboration motivators; virtual organization breeding environments; collaboration spaces; designing collaborative networks; cost, benefits and performance; identification of patterns; co-innovation and competitiveness; collaborative behavior models; and risks, governance, trust
    corecore