4 research outputs found

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    A survey of models for inference of gene regulatory networks

    Get PDF
    In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIPSeq technologies and the application of computational methods in reverse engineering of gene regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks, Bayesian networks, relevance networks, differential and difference equations are described. A novel model for integration of prior biological knowledge in the GRNs inference is presented, too. The advantages and disadvantages of the described models are compared. The GRNs validation criteria are depicted. Current trends and further directions for GRNs inference using prior knowledge are given at the end of the paper

    A survey of models for inference of gene regulatory networks

    Get PDF
    In this article, I present the biological backgrounds of microarray, ChIP-chip and ChIPSeq technologies and the application of computational methods in reverse engineering of gene regulatory networks (GRNs). The most commonly used GRNs models based on Boolean networks, Bayesian networks, relevance networks, differential and difference equations are described. A novel model for integration of prior biological knowledge in the GRNs inference is presented, too. The advantages and disadvantages of the described models are compared. The GRNs validation criteria are depicted. Current trends and further directions for GRNs inference using prior knowledge are given at the end of the paper

    Evidence-based Clustering of Reads and Taxonomic Analysis of Metagenomic Data

    Get PDF
    Contains fulltext : 75597.pdf (preprint version ) (Open Access)Pattern Recognition in Bioinformatics 4th IAPR International Conference, PRIB 2009 Sheffield, UK, 7 september 200
    corecore