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Abstract. The rapidly emerging field of metagenomics seeks to exam-
ine the genomic content of communities of organisms to understand their
roles and interactions in an ecosystem. In this paper we focus on cluster-
ing methods and their application to taxonomic analysis of metagenomic
data. Clustering analysis for metagenomics amounts to group similar par-
tial sequences, such as raw sequence reads, into clusters in order to dis-
cover information about the internal structure of the considered dataset,
or the relative abundance of protein families. Different methods for clus-
tering analysis of metagenomic datasets have been proposed. Here we
focus on evidence-based methods for clustering that employ knowledge
extracted from proteins identified by a BLASTx search (proxygenes).
We consider two clustering algorithms introduced in previous work and
a new one. We discuss advantages and drawbacks of the algorithms, and
use them to perform taxonomic analysis of metagenomic data. To this
aim, three real-life benchmark datasets used in previous work on metage-
nomic data analysis are used. Comparison of the results indicate satisfac-
tory coherence of the taxonomies output by the three algorithms, with
respect to phylogenetic content at the class level and taxonomic distribu-
tion at phylum level. In general, the experimental comparative analysis
substantiates the effectiveness of evidence-based clustering methods for
taxonomic analysis of metagenomic data.

1 Introduction

The rapidly emerging field of metagenomics seeks to examine the genomic con-
tent of communities of organisms to understand their roles and interactions
in an ecosystem. Given the wide-ranging roles microbes play in many ecosys-
tems, metagenomics studies of microbial communities will reveal insights into
protein families and their evolution. Because most microbes will not grow in
the laboratory using current cultivation techniques, scientists have turned to
cultivation-independent techniques to study microbial diversity. At first shotgun
Sanger sequencing was used to survey the metagenomic content, but nowadays
massive parallel sequencing technology like 454 or Illumina, allow random sam-
pling of DNA sequences to examine the genomic material present in a microbial
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community [4]. Using metagenomics, it is now possible to sequence and assemble
genomes that are constructed from a mixture of organisms.

For a given sample, one would like to determine the phylogenetic prove-
nance of the obtained fragments, the relative abundance of its different members,
their metabolic capabilities, and the functional properties of the community as
a whole. To this end, computational analysis is becoming increasingly indis-
pensable [11,13]. In particular, clustering methods are used for rapid analysis of
sequence diversity and internal structure of the sample [8], for discovering pro-
tein families present in the sample [3], and as a pre-processing set for performing
comparative genome assembly [12], where a reference closely related organism is
employed to guide the assembly process.

In this paper we focus on clustering methods and their application to tax-
onomic analysis of metagenomic data. Clustering analysis for metagenomics
amounts to group similar partial sequences, such as raw sequence reads, or candi-
date ORF (Open Reading Frame) sequences generated by an assembly program
into clusters in order to discover information about the internal structure of
the considered dataset, or the relative abundance of protein families. Different
methods for clustering analysis of metagenomic datasets have been proposed,
which can be divided into two main approaches. Sequence- and evidence-based
methods.

Sequence-based methods compare directly sequences using a similarity mea-
sure either based on sequence overlapping [8] or on extracted features such as
oligonucleotide frequency [2]. Evidence-based methods employ knowledge ex-
tracted from external sources in the clustering process, like proteins identified
by a BLASTx search (proxygenes) [3]. In this paper we focus on the latter ap-
proach for clustering short reads.

We consider two clustering algorithms introduced in previous work [3,5] and
a refinement of the latter one based on ensemble techniques. These algorithms
cluster reads using weighted proteins as evidence. Such proteins are obtained
by a specialized version of BLAST (Basic Local Alignment Search Tool), called
BLASTx, which associates a list of hits to one read. Each hit consists of one
protein, two score values, called bit and identities, which measure the quality
of the read-protein matching, and one confidence value, called E-value, which
amounts to a confidence measure of the matching between the read and the
protein.

Specifically, in [3] an algorithm, here called LWproxy (Local Weight proxy),
is introduced, that clusters reads and those proteins in their sets of hits simul-
taneously, in such a way that one cluster of proteins is associated to one cluster
of reads. Then it assigns one local weight to each protein of a cluster, using the
cumulative BLASTx bit score of those reads in corresponding cluster having that
protein as one of their hits. The protein with best weight (highest cumulative
bit score) is selected as prozygene of the cluster of reads.

In [5], an alternative method for clustering metagenome short reads based on
weighted proteins is proposed, here called GWproxy (Global Weight proxy). The
method first assigns global weights to each protein using the BLASTx identity



and bit score of those reads having that protein as one of their hits. Next, the
method groups reads into clusters using an instance of the weighted set covering
problem, with reads as rows and proteins as columns. It seeks the smallest set of
columns covering all rows and having best total weight. A solution corresponds
to a clustering of reads and one protein (proxygene) associated to each cluster.

While in [3] the proxygene of a cluster is selected within a set of proteins
associated to that cluster, in GWproxy clustering and proxygene selection are
performed at the same time.

In this paper we introduce a refinement of GWproxy based on the following
ensemble technique, called EGWproxy (Ensemble Global Weight proxy). The
algorithm associates a list of proteins to each cluster resulting from application
of GWproxy, such that each protein occurs as hit of each of the reads of that
cluster. Such a list is used for refining the biological analysis of the cluster,
for instance by assigning a taxonomic identifier ({axzID) by means of weighted
majority vote among the taxID’s of the proteins in the associated list.

We discuss advantages and drawbacks of the above clustering algorithms,
and use them to perform taxonomic analysis of metagenomic data. To this aim,
three real-life benchmark datasets used in previous work on metagenomic data
analysis are used. These datasets were introduced in [3] and used to perform
a thorough analysis of evidence-based direct- and indirect (that is, using prox-
ygenes) annotation methods for short metagenomic reads. The results of such
analysis substantiated advantages and effectiveness of indirect methods over di-
rect ones.

The results of the three considered evidence-based clustering algorithms in-
dicate satisfactory coherence of the taxonomies output by the algorithms, with
the GWproxy based algorithms yielding taxonomic content closer to that of
the metagenome data. In general, the experimental comparative analysis sub-
stantiates the effectiveness of evidence-based methods for taxonomic analysis of
metagenomic data.

2 Clustering Metagenome Short Reads using Proxygenes

Different methods for clustering analysis of metagenomic datasets have been pro-
posed, which can be divided into two main approaches. Sequence- and evidence-
based methods. Sequence-based methods compare directly sequences using a sim-
ilarity measure either based on sequence overlapping [8] or on extracted features
such as oligonucleotide frequency [2]. Evidence-based methods employ knowledge
extracted from external sources in the clustering process, like proteins identified
by a BLASTx search (proxygenes) [3].

Here we consider the latter approach for clustering short reads.

The knowledge used by the clustering algorithms here considered is extracted
by a reference proteome database by matching reads to that database by means
of BLASTX, a powerful search program. BLASTx belongs to the BLAST (Basic
Local Alignment Search Tool) family, a set of similarity search programs de-
signed to explore all of the available sequence databases regardless of whether



the query is protein or DNA [7,9]. BLASTx is the BLAST program designed
to evaluate the similarities between DNA sequences and proteins; it compares
nucleotide sequence queries dynamically translated in all six reading frames to
peptide sequence databases. The scores assigned in a BLAST search have a sta-
tistical interpretation, making real matches easier to distinguish from random
background hits. In the following we summarize the main features of BLAST.

2.1 The BLAST alignment method

BLAST uses a heuristic algorithm that seeks local as opposed to global align-
ments and is therefore able to detect relationships among sequences that share
only isolated regions of similarity [1]. When a query is submitted, BLAST works
by first making a look-up table of all the words (short subsequences, three letters
in our case) and neighboring words, i.e., similar words in the query sequence. The
sequence database is then scanned for these strings; the locations in the databases
of all these words are called word hits. Only those regions with word hits will
be used as alignment seeds. When one of these matches is identified, it is used
to initiate gap-free and gapped extensions of the word. After the algorithm has
looked up all possible words from the query sequence and extended them maxi-
mally, it assembles the statistically significant alignment for each query-sequence
pair, called High-scoring Segment Pair (HSP).

The matching reliability of read r and protein p is evaluated trough Bit
Score, denoted by Sg(r,p), and E-value, denoted by E. The bit score of one HSP
is computed as the sum of the scoring matrix values for that segment pair. The
E-value is the number of times one might expect to see such a query-sequence
match (or a better one) merely by chance. Another important BLASTx score of
matching between  and p is Identities score, denoted by 1d(r, p), defined as the
proportion of the amino-acids in the database sequence that are matched by the
amino-acids translation of the current query frame. We refer to [7] for a formal
description of these measures.

We turn now to describe the three methods here used for taxonomic analysis
of metagenomic data. Here and in the sequel we assume the BLASTx has been
applied to a metagenomic data set with a given Evalue cutoff value. We denote
by R = {r1,...,rm} the resulting set of reads having at least one BLASTx hit
for the given cutoff, and by P = {p1,...,p,} the set of proteins occurring in the
hit of at least one read of R.

2.2 LWproxy

LWproxy generates a collection of pairs (C;, P;), where C; is a set of reads and
P; a set of proteins. The algorithm can be summarized as follows.

1. Set i =0.
2. X =R.
3. If X is empty then terminate, otherwise set i =4 + 1.



4. Select randomly! one read r; from X as seed of cluster C; = {ri}.

5. Set P; to the set of hits of r;.

6. Remove r; from X.

7. Add to C; all reads having one element of P; as a best hit, and remove them
from X.

8. Add to P; all hits of those reads added to C; in the previous step.

9. If no reads are added then go to step 3, otherwise go to step 7.

When the clustering process is terminated, the method assigns one proxygene
to each C; by selecting from P; the protein having highest cumulative bit-score.

Ezample 1. Suppose given a set of five reads {ry,...,75} and suppose that the
proteins occurring in their hits:

— {p1,p3,ps} for read r{, with best hit ps.
— {p1,p3,ps} for read ro, with best hit ps.
— {pa, pa} for read r3, with best hit ps.

— {pa} for read r4, with best hit ps.

— {pa, 3, ps} for read 75, with best hit ps.

Suppose LWproxy selects 15 as seed of the first cluster C;. Then it adds all the
other reads to C', since their best hit is in the list of hits of r5. P; becomes equal
to the entire set of proteins. Suppose for simplicity that all proteins have equal
bit-score. Then LWproxy selects ps as proxygene, since it has highest cumulative
bit-score.

2.3 GWproxy

While LWproxy constructs clusters incrementally, GWproxy searches for clusters
in a given search space, consisting of clusters characterized by the proteins as
follows. We say that a protein covers a read if the protein occurs as one of the hits
of that read. Then each protein characterizes one cluster, consisting of the reads
it covers. Moreover, we can assign to each protein a global weight, representing
the cost of selecting that protein as cluster representative. The weight of protein
p is defined as

wip) = 14 — > (100X =58P) 400~ a7,

f - max —min
rlp hit of r

where "™ denotes the smallest integer bigger or equal than v, and N, is the
number of reads having p as one of their hits. The maximum and minimum value
of Sp over the considered pairs of reads and proteins, max and min, respectively,
are used to scale Sp(r,p). The weight is such that better proteins have smaller
w value (smaller cost).

! We consider here random seed selection. However, in [3] the criterion for selecting a
seed is not specified.



Clustering then amount at finding a minimum set of proteins in R that, to-
gether, cover all the reads in R and have minimum total cost. Formally, consider
the vector of protein weights w € N™ and the matrix A € {0,1}™*"™ whose
elements a;; are such that

1, if p; covers ry,
Q45 = .
0, otherwise.

We want to solve the following constrained optimization problem (weighted
set covering problem (WSC, in short)).

n

n
min TW;, such that a5 > 1, for i=1,...,m. WsC
(2T 2 2 a0 2 (sC)

The variable z; indicates whether p; belongs to the solution (z; = 1) or not
(x; = 0). The m constraint inequalities are used to express the requirement that
each read r; be covered by at least one protein. The weight w; specifies the cost
of protein p;.

Here a fast heuristic algorithm? for WSC [10] is applied to find a solution. A
solution corresponds to a subset of P consisting of those proteins p; such that
z; = 1. Bach of the selected proteins is a prozygene. It represents the cluster
consisting of those reads covered by that protein.

Ezample 2. We illustrate the application of GWproxy on the toy problem of Ex-
ample 1. Assume for the sake of simplicity that all proteins have equal weight.
Then Figure 1 (left part) shows the corresponding 5-row, 6-column matrix a;;.
Application of GWproxy outputs proteins po, ps (see Figure 1 right part). The se-
lected proteins correspond to the two clusters of reads {73, r4,rs} and {rq, ro, 75},
with po and p3 as associated proxygenes, respectively.

Fig. 1. Left: input covering matrix; position (i,j) contains a 1 if protein p; occurs
in the set of selected hits of read r;, otherwise it contains a 0. Right: proxygenes
selected by the GWproxy are indicated by arrows.
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2.4 EGWproxy

The aim of this algorithm is to refine the clustering produced by GWproxy as
follows. Each cluster that GWproxy outputs is represented by one protein. How-
ever, because of the short length of reads, and because in general the size of
clusters is not very big (see analysis in [5]), it may well happen that more than
one protein covers all the reads of a cluster. All such proteins can be considered
as equivalent representative of that cluster. However, GWproxy selects only one
of such proteins, among those having best score.

It is biologically meaningful to consider the information contained in all such
proteins when performing protein family and taxonomic analysis of that cluster.
To this aim, for each cluster, EGWproxy outputs the maximum set of proteins
such that, each protein in that set covers all reads of that cluster. Biological
analysis of that cluster can then be performed by means of ensemble techniques.
For instance, for performing taxonomic analysis of cluster C, the following cri-
terion can be used in order to decide which taxID to associate to C. The set T
of taxID’s of the list of proteins that EGWproxy associates to C is considered.
Then the final taxID t¢;, of C' is computed as

tfin = arg;c min Z %.
p with taxID equal to t 7

Figure 2 shows the output of EGWproxy on one of the datasets used in our
experiments (M3, see Section 3): it plots the list (of proteins) size (x-axis) versus
the number of lists of that size (y-axis). Similar trends are obtained on the other
two datasets considered in our experiments. On these datasets the length of the
resulting protein lists remains 1 for more than half of the clusters, while in some
cases it becomes rather big (this is more likely to happen for small clusters).

Fig. 2. Plot of size of protein lists (x-axis) versus number of lists of that size
(y-axis) output by EGWproxy on dataset M3.

2.5 Comparison of Algorithms

GWproxy and LWproxy use different clustering heuristics: the first algorithm
searches a clustering in a fixed searching space characterized by the sets of reads
covered by each protein in R, while LWproxy constructs incrementally clusters



of reads and of proteins. Furthermore, GWproxy scores proteins using bit and
identities score, while LWproxy uses only bit score. Finally, GWproxy scores each
protein globally, that is, using all the reads it covers, while LWproxy scores only
the proteins of a cluster, where each protein is scored locally using the reads it
covers that belong to that cluster.

Both EGWproxy and LWproxy associates to each cluster of reads one set of
proteins. However, while LWproxy selects one protein as final representative of a
cluster, EGWproxy employs an ensemble technique in order to exploit information
of all the proteins of that set.

A drawback of LWproxy is that results may be affected by the choice of
the read used in the first step of the algorithm, as illustrated by the following
example.

Example 3. Consider the toy problem in Example 1. If LWproxy starts from 7y
as seed for C then only 4 is added to C1, since 74 (best hit of each of the other
reads) does not occur in the list of protein associated to C;. Then construction of
a second cluster, say Cy begins. Cy is filled with the rest of the reads (r3, r4,75).

While in the experiments here conducted this drawback does not seem to
affect the results, it remains to be investigated whether this drawback does not
affect results in general.

A drawback of GWproxy is that it outputs only one solution, while in general
there may be more ”optimal” clustering of reads. This is because the weighted
set covering problem seeks one optimal solution, not the set of all optimal so-
lutions. EGWproxy tries to overcome this drawback by using a post-processing
step, followed by the application of an ensemble technique for merging multiple
solutions. However, the post-processing step acts only on the set of proteins,
while the clusters of reads remain those produced by GWproxy. It remains to
be investigated whether application of ensemble techniques also at the level of
clusters of reads can improve the performance of the method.

3 Taxonomic Analysis of Metagenome Data

We consider three complex metagenome datasets introduced in [3], called in the
following M1, M2 and M3. These datasets were generated, respectively, from 9,
5 and 8 genome projects, sequenced at the Joint Genome Institute (JGI) using
the 454 GS20 pyrosequencing platform that produces ~ 100 bp reads. From
each genome project, reads were sampled randomly at coverage level 0.1.X. The
coverage is defined as the average number of times a nucleotide is sampled. This
resulted in a total of 35230, 28870 and 35861 reads, respectively.

Table 1 shows the names of the organisms and the number of reads generated
for the M1 dataset. The reader is referred to [3] for a detailed description of all
the datasets.

In our experiments we use the NR? (non-redundant) protein sequence database
as reference database for BLASTx. The parameters of the external software we

® Publicly available at ftp://ftp.ncbi.nlm.nih.gov /blast /db.
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1d.|Organism genome size (bp)|reads sampled
a |Clostridium phytofermentans ISDg 4 533 512 4638
b |Prochlorococcus marinus NATL2A 1 842 899 1866
¢ |Lactobacillus reuteri 100-23 2 174 299 2371
d |Caldicellulosiruptor saccharolyticus DSM 8903|2 970 275 2950
e |Clostridium sp. OhILAs 2 997 608 2034
f |Herpetosiphon aurantiacus ATCC 23779 6 605 151 6937
g |Bacillus weihenstephanensis KBAB4 5 602 503 4158
h |[Halothermothrix orenii H 168 2 578 146 2698
i |Clostridium cellulolyticum H10 3 958 683 3978

Table 1. Characteristics of the organisms used in the experiments: the identifier
and name of the organism, the size of its genome and the total number of reads
sampled (M1 dataset).

used are set as follows. For BLASTx the default parameters were used. In all
experiments we used Evalue cutoff E = 10~°. Moreover, WSCP was run with
pre-processing (—p), number of iterations equal to 1000 (—z1000), one tenth of
the best actual cover used as starting partial solution (—a0.1), and 150 columns
to be selected for building the initial partial cover at the first iteration (—b150).
For lack of space, we refer to [10] for a detailed description of the WSCP program.

3.1 Results

We extract taxonomic information from each metagenome dataset as follows.
For LWproxy and GWproxy each cluster of reads is represented by one protein.
The taxID of such protein is used as taxonomic information of that cluster. For
EGWproxy the list of proteins associated to each cluster is transformed into one
taxID as described in Section 2.4.

In this way, the metagenomic data is transformed into a set of taxID’s of
proteins, one for each cluster of reads. Taxonomic information is then retrieved
from the NCBI taxonomy (see http://www.ncbi.nlm.nih.gov/Taxonomy/).
The NCBI Taxonomy database is a curated set of taxonomic classifications for
all the organisms that are represented in GenBank. Each taxon in the database
is associated with a numerical unique identifier called taxID. In the present anal-
ysis, the taxonomic information of these known proxygenes is used to determine
the taxonomic content of the metagenomic data.

We visualize the resulting taxonomic information in two ways.

— Histogram of phylogenetic identities, as done e.g. in [6]. Shown are the per-
centages of the total of identifiable hits assigned to the phylogenetic groups
obtained by means of the taxID of the proxygenes. Here analysis at the class
taxonomic level is performed.

— Graph representation of taxonomic distribution of reads, as done e.g. in [14].
Here analysis at the taxonomic level of phylum and class is performed, where
resulting taxa containing less than 10 reads are discarded.

We apply the above techniques to the proxygenes and taxid obtained from the
considered algorithms, as well as to the known taxid’s of the original metagenome
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data sets, provided by the producers of the benchmark data [3]. We use these
latter results as "golden truth” (GT in short) to evaluate the methods.
Histograms of phylogenetic identities at the class level for the three data sets
are shown in Figure 3. On dataset M 1 EGWproxy achieves results most similar
to GT. On M 2 the three methods perform equally well, with results close to those
of GT. On M 3 there is a clear discrepancy in the percentages output by the three

methods and GT, where LWproxy appears slightly closer to GT than the other
methods.

Fig. 3. Taxomonic distribution at taxonomic class level of the three datasets.
From left to right: M1, M2 and M3. From top to bottom: "golden truth”,
GWproxy, EGWproxy and LWproxy.

For lack of space, we show graphs of the taxonomic distribution at phylum
and class level only for M 1 in Figure 4. Results indicate satisfactory consensus
among the three methods, yielding similar type of graphs. The quality of re-
sults is satisfactory, with only one mismatching subtree. Indeed, the GT graph
contains Cyanobacteria at phylum level, while all the graphs of the three clus-
tering methods contain Proteobacteria at phylum level. This may be possibly
justified by the fact that Proteobacteria is a phylum with more sequenced
representatives than all other bacterial phylia combined [3]. However, a more
thorough investigation of the reads assigned to this phylum is required, in order



to check whether these reads are assigned to Cyanobacteria by GI. On M 2, re-
sults show relative coherence of the taxonomic assignment of the three methods,
and close similarity to GT. Indeed, at the phylum level, the three methods assign
about 2% of the total amount of reads to an incorrect phylum (Firmicutes).
On M 3 the three methods assign about 0.1% of the total amount of reads to
Firmicutes.

Fig. 4. Phylogenetic graph for M1. From top to bottom: LWproxy, GWproxy,
EGWproxy and ”golden truth”.

4 Conclusion and Future Work

In this paper we compared three methods for clustering reads and their appli-
cation to taxonomic analysis of metagenome data. We discuss advantages and
drawbacks of the methods and applied them to perform taxonomic analysis
of three real-life metagenome datasets with known taxonomic content. Results
of such analysis indicate satisfactory consensus of all the three methods, and
very good performance with respect to taxonomic distribution and phylogenetic
content. In future work we intend to use the results of this investigation for de-
signing even better clustering methods, in order to obtain fully reliable results.
To this aim, we intend to introduce a statistical test for measuring significance
of taxonomic assignment, in order to discard assignments possibly due to the



composition of the reference proteome database used when applying BLASTx.
Such a test will consider not only the number of reads assigned to a taxa, but
also the divergence of their proxygenes as well as the nucleotide composition of
the reads.
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