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A b stra c t. The rapidly emerging field of metagenomics seeks to  exam­
ine the genomic content of communities of organisms to  understand their 
roles and interactions in an ecosystem. In this paper we focus on cluster­
ing m ethods and their application to  taxonomic analysis of metagenomic 
da ta . Clustering analysis for metagenomics am ounts to  group similar par­
tial sequences, such as raw sequence reads, into clusters in order to  dis­
cover inform ation about the internal structure of the considered dataset, 
or the relative abundance of protein families. Different m ethods for clus­
tering analysis of metagenomic datasets have been proposed. Here we 
focus on evidence-based m ethods for clustering th a t employ knowledge 
extracted from proteins identified by a BLASTx search (proxygenes).
We consider two clustering algorithms introduced in previous work and 
a new one. We discuss advantages and drawbacks of the algorithms, and 
use them  to perform  taxonomic analysis of metagenomic data. To this 
aim, three real-life benchm ark datasets used in previous work on metage- 
nomic d a ta  analysis are used. Com parison of the results indicate satisfac­
tory coherence of the taxonomies ou tput by the three algorithms, with 
respect to  phylogenetic content at the class level and taxonomic distribu­
tion at phylum  level. In general, the experim ental com parative analysis 
substantiates the effectiveness of evidence-based clustering m ethods for 
taxonomic analysis of metagenomic data.

1 In trodu ction

The rapidly  emerging field of m etagenom ics seeks to  examine the genomic con­
ten t of com m unities of organism s to  understand  their roles and interactions 
in an ecosystem. Given the  w ide-ranging roles m icrobes play in m any ecosys­
tem s, m etagenom ics studies of m icrobial com m unities will reveal insights into 
protein  families and their evolution. Because m ost microbes will not grow in 
the labora to ry  using current cultivation techniques, scientists have tu rned  to  
cultivation-independent techniques to  study  microbial diversity. At first shotgun 
Sanger sequencing was used to  survey the m etagenom ic content, bu t nowadays 
massive parallel sequencing technology like 454 or Illum ina, allow random  sam ­
pling of DNA sequences to  exam ine the genomic m aterial present in a microbial
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com m unity [4]. Using metagenomics, it is now possible to  sequence and assemble 
genomes th a t are constructed  from a m ixture of organisms.

For a given sample, one would like to  determ ine the  phylogenetic prove­
nance of the  obtained fragments, the  relative abundance of its different members, 
the ir m etabolic capabilities, and the functional properties of the  com m unity as 
a whole. To th is end, com putational analysis is becoming increasingly indis­
pensable [11,13]. In particular, clustering m ethods are used for rap id  analysis of 
sequence diversity and in ternal s truc tu re  of the  sample [8], for discovering pro­
tein  families present in the  sample [3], and as a pre-processing set for perform ing 
com parative genome assembly [12], where a reference closely related  organism  is 
employed to  guide the assembly process.

In th is paper we focus on clustering m ethods and their application to  tax ­
onomic analysis of m etagenom ic data . C lustering analysis for metagenomics 
am ounts to  group sim ilar p artia l sequences, such as raw sequence reads, or candi­
date O R F (O pen Reading Frame) sequences generated by an assembly program  
into clusters in order to  discover inform ation about the in ternal struc tu re  of 
the considered datase t, or the relative abundance of protein families. Different 
m ethods for clustering analysis of m etagenom ic datasets have been proposed, 
which can be divided into two m ain approaches. Sequence- and evidence-based 
m ethods.

Sequence-based m ethods com pare directly  sequences using a sim ilarity m ea­
sure either based on sequence overlapping [8] or on ex tracted  features such as 
oligonucleotide frequency [2]. Evidence-based m ethods employ knowledge ex­
trac ted  from external sources in the clustering process, like proteins identified 
by a BLASTx search (proxygenes) [3]. In th is paper we focus on the la tte r ap­
proach for clustering short reads.

We consider two clustering algorithm s introduced in previous work [3,5] and 
a refinement of the  la tte r one based on ensemble techniques. These algorithm s 
cluster reads using weighted proteins as evidence. Such proteins are obtained 
by a specialized version of BLAST (Basic Local A lignment Search Tool), called 
BLASTx, which associates a list of hits to  one read. Each h it consists of one 
protein, two score values, called b it and identities, which m easure the quality  
of the  read-protein m atching, and one confidence value, called E-value, which 
am ounts to  a confidence m easure of the m atching between the  read and the 
protein.

Specifically, in [3] an algorithm , here called LWproxy (Local W eight proxy), 
is introduced, th a t clusters reads and those proteins in the ir sets of hits simul­
taneously, in such a way th a t one cluster of proteins is associated to  one cluster 
of reads. Then it assigns one local weight to  each protein  of a cluster, using the 
cum ulative BLASTx bit score of those reads in corresponding cluster having th a t 
protein  as one of their hits. The protein w ith best weight (highest cum ulative 
b it score) is selected as proxygene of the cluster of reads.

In [5], an alternative m ethod for clustering m etagenom e short reads based on 
weighted proteins is proposed, here called GWproxy (Global W eight proxy). The 
m ethod first assigns global weights to  each protein  using the BLASTx identity



and bit score of those reads having th a t protein  as one of the ir hits. Next, the 
m ethod groups reads into clusters using an instance of the weighted set covering 
problem, w ith reads as rows and proteins as columns. It seeks the sm allest set of 
columns covering all rows and having best to ta l weight. A solution corresponds 
to  a clustering of reads and one protein (proxygene) associated to  each cluster.

W hile in [3] the  proxygene of a cluster is selected w ithin a set of proteins 
associated to  th a t cluster, in GWproxy clustering and proxygene selection are 
perform ed a t the same time.

In th is paper we introduce a refinement of GWproxy based on the  following 
ensemble technique, called EGWproxy (Ensemble Global W eight proxy). The 
algorithm  associates a list of proteins to  each cluster resulting from application 
of GWproxy, such th a t each protein occurs as h it of each of the reads of th a t 
cluster. Such a list is used for refining the biological analysis of the cluster, 
for instance by assigning a taxonom ic identifier (taxID) by m eans of weighted 
m ajority  vote among the tax ID ’s of the proteins in the associated list.

We discuss advantages and drawbacks of the above clustering algorithm s, 
and use them  to  perform  taxonom ic analysis of m etagenom ic data . To th is aim, 
three real-life benchm ark datase ts  used in previous work on m etagenom ic d a ta  
analysis are used. These datase ts  were in troduced in [3] and used to  perform  
a thorough analysis of evidence-based direct- and indirect ( th a t is, using prox­
ygenes) annotation  m ethods for short m etagenom ic reads. The results of such 
analysis substan tia ted  advantages and effectiveness of indirect m ethods over di­
rect ones.

The results of the three considered evidence-based clustering algorithm s in­
dicate satisfactory coherence of the taxonom ies o u tp u t by the algorithm s, w ith 
the GWproxy based algorithm s yielding taxonom ic content closer to  th a t of 
the m etagenom e data . In general, the  experim ental com parative analysis sub­
stan tia tes the  effectiveness of evidence-based m ethods for taxonom ic analysis of 
m etagenom ic data .

2 C lustering M etagen om e Short R eads using P roxygen es

Different m ethods for clustering analysis of m etagenom ic datase ts  have been pro­
posed, which can be divided into two m ain approaches. Sequence- and evidence- 
based m ethods. Sequence-based m ethods com pare directly  sequences using a sim­
ilarity  m easure either based on sequence overlapping [8] or on ex tracted  features 
such as oligonucleotide frequency [2]. Evidence-based m ethods employ knowledge 
ex tracted  from external sources in the  clustering process, like proteins identified 
by a BLASTx search (proxygenes) [3].

Here we consider the  la tte r approach for clustering short reads.
The knowledge used by the clustering algorithm s here considered is extracted  

by a reference proteom e database by m atching reads to  th a t database by means 
of BLASTx, a powerful search program . BLASTx belongs to  the BLAST (Basic 
Local A lignment Search Tool) family, a set of sim ilarity search program s de­
signed to  explore all of the  available sequence databases regardless of w hether



the  query is protein  or DNA [7,9]. BLASTx is the  BLAST program  designed 
to  evaluate the sim ilarities between DNA sequences and proteins; it compares 
nucleotide sequence queries dynam ically transla ted  in all six reading frames to  
peptide sequence databases. The scores assigned in a BLAST search have a s ta ­
tistical in terpretation , m aking real m atches easier to  distinguish from random  
background hits. In the following we sum m arize the  m ain features of BLAST.

2.1  T h e  B L A S T  a l ig n m e n t  m e th o d

BLAST uses a heuristic algorithm  th a t seeks local as opposed to  global align­
m ents and is therefore able to  detect relationships among sequences th a t share 
only isolated regions of sim ilarity [1]. W hen a query is subm itted , BLAST works 
by first m aking a look-up tab le  of all the words (short subsequences, three letters 
in our case) and neighboring words, i.e., sim ilar words in the  query sequence. The 
sequence database is then  scanned for these strings; the  locations in the databases 
of all these words are called word hits. Only those regions w ith word h its will 
be used as alignm ent seeds. W hen one of these m atches is identified, it is used 
to  in itia te  gap-free and gapped extensions of the word. After the algorithm  has 
looked up all possible words from the  query sequence and extended them  m axi­
mally, it assembles the sta tistically  significant alignm ent for each query-sequence 
pair, called High-scoring Segment P air  (HSP).

The m atching reliability of read r  and protein p  is evaluated trough B it  
Score, denoted by SB (r,p ), and E-value, denoted by E . The bit score of one HSP 
is com puted as the sum  of the scoring m atrix  values for th a t segment pair. The 
E-value is the  num ber of tim es one m ight expect to  see such a query-sequence 
m atch (or a b e tte r one) merely by chance. A nother im portan t BLASTx score of 
m atching between r  and p  is Identities score, denoted by Id (r,p ), defined as the 
proportion of the amino-acids in the database sequence th a t are m atched by the 
amino-acids transla tion  of the current query frame. We refer to  [7] for a formal 
description of these measures.

We tu rn  now to  describe the three m ethods here used for taxonom ic analysis 
of m etagenom ic data . Here and in the sequel we assume the  BLASTx has been 
applied to  a m etagenom ic d a ta  set w ith a given Evalue cutoff value. We denote 
by R  =  { r i , . . . ,  r m } the  resulting set of reads having a t least one BLASTx hit 
for the  given cutoff, and by P  =  {p1, . . .  ,p n } the  set of proteins occurring in the 
h it of a t least one read of R.

2 .2  LWproxy

LWproxy generates a collection of pairs (Ci ,P i ), where Ci is a set of reads and 
Pi a set of proteins. The algorithm  can be sum m arized as follows.

1. Set i =  0.
2. X  =  R.
3. If X  is em pty then  term inate, otherwise set i =  i +  1.



4. Select random ly 1 one read r* from X  as seed of cluster Q  =  (r*}.
5. Set Pi to  the  set of h its of r*.
6. Remove r* from X .
7. Add to  Q  all reads having one elem ent of P* as a best h it, and remove them  

from X .
8. Add to  P* all h its of those reads added to  Q  in the previous step.
9. If no reads are added then  go to  step  3, otherwise go to  step  7.

W hen the  clustering process is term inated, the  m ethod assigns one proxygene 
to  each Q  by selecting from P* the protein  having highest cum ulative bit-score.

Example 1. Suppose given a set of five reads ( r 1, . . .  , r 5} and suppose th a t the 
proteins occurring in their hits:

— (p 1,p 3 ,p 5} for read r 1, w ith best h it p3.
— (p 1,p 3 ,p 5} for read r 2, w ith best h it p3.
— (p 2,p 4} for read r 3, w ith best h it p 2.
— {p2} for read r 4, w ith best h it p 2.
— {p2,p 3 ,p 5} for read r 5, w ith best h it p 2.

Suppose LWproxy selects r 5 as seed of the  first cluster C 1. Then it adds all the 
o ther reads to  C 1, since their best hit is in the  list of hits of r 5. P 1 becomes equal 
to  the  entire set of proteins. Suppose for sim plicity th a t all proteins have equal 
bit-score. T hen LWproxy selects p 2 as proxygene, since it has highest cum ulative 
bit-score.

2 .3  GWproxy

W hile LWproxy constructs clusters incrementally, GWproxy searches for clusters 
in a given search space, consisting of clusters characterized by the proteins as 
follows. We say th a t a protein  covers a read if the  protein  occurs as one of the  hits 
of th a t read. T hen each protein  characterizes one cluster, consisting of the reads 
it covers. Moreover, we can assign to  each protein a global weight, representing 
the cost of selecting th a t protein  as cluster representative. The weight of protein 
p  is defined as

y(p) =  1 + r -1  ^  (100max S b (r,p ) + 1 0 0  -  I d ( )) 
Np max — minr\p hH of r

where r vn denotes the  sm allest integer bigger or equal th an  v, and N p is the 
num ber of reads having p  as one of their hits. The m axim um  and m inim um  value 
of S B over the considered pairs of reads and proteins, max and min, respectively, 
are used to  scale SB (r,p ). The weight is such th a t b e tte r proteins have smaller 
w  value (smaller cost).

1 We consider here random  seed selection. However, in [3] the criterion for selecting a 
seed is not specified.



Clustering then  am ount a t finding a minim um  set of proteins in R  th a t, to ­
gether, cover all the  reads in R  and have m inim um  to ta l cost. Formally, consider 
the vector of protein weights w £ Nn and the  m atrix  A £ {0, l} mxn whose 
elements a j  are such th a t

{
1, if p n covers r ,
0, otherwise.

We w ant to  solve the  following constrained optim ization problem  (weighted 
set covering problem  (WSC, in short)).

m in Xj Wj , such th a t a j Xj > 1, for i =  1 , . . . , m .  (WSC)
xG{0,i }n j =1 j =1

The variable Xj indicates w hether pj  belongs to  the solution (xj =  1) or not 
(xj =  0). T he m  constrain t inequalities are used to  express the  requirem ent th a t 
each read r  be covered by a t least one protein. The weight Wj specifies the  cost 
of protein p j .

Here a fast heuristic algorithm 2 for WSC [10] is applied to  find a solution. A 
solution corresponds to  a subset of P  consisting of those proteins p j such th a t 
Xj =  1. Each of the  selected proteins is a proxygene. It represents the  cluster 
consisting of those reads covered by th a t protein.

Example 2. We illustrate  the  application of GWproxy on the toy problem  of Ex­
ample 1. Assume for the  sake of simplicity th a t all proteins have equal weight. 
Then Figure 1 (left part) shows the  corresponding 5-row, 6-column m atrix  a j . 
Application of GWproxy ou tpu ts proteins p 2,p 3 (see Figure 1 right p art). The se­
lected proteins correspond to  the  two clusters of reads {r3, r4 , r 5 } and { r1, r 2, r 5 }, 
w ith p 2 and p 3 as associated proxygenes, respectively.

F ig . 1. Left: input covering m atrix; position (i,j) contains a 1 if p rotein pj occurs 
in the  set of selected h its of read r , otherwise it contains a 0. Right: proxygenes 
selected by the  GWproxy are indicated by arrows.

2 Publicly available at h ttp : //w w w .c s .ru .n l/~ e le n a m
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2 .4  EGWproxy

The aim of th is algorithm  is to  refine the  clustering produced by GWproxy as 
follows. Each cluster th a t GWproxy o u tpu ts is represented by one protein. How­
ever, because of the  short length of reads, and because in general the  size of 
clusters is not very big (see analysis in [5]), it may well happen th a t more th an  
one protein  covers all the  reads of a cluster. All such proteins can be considered 
as equivalent representative of th a t cluster. However, GWproxy selects only one 
of such proteins, among those having best score.

It is biologically m eaningful to  consider the  inform ation contained in all such 
proteins when perform ing protein  family and taxonom ic analysis of th a t cluster. 
To th is aim, for each cluster, EGWproxy o u tpu ts the  m axim um  set of proteins 
such th a t, each protein  in th a t set covers all reads of th a t cluster. Biological 
analysis of th a t cluster can then  be perform ed by m eans of ensemble techniques. 
For instance, for perform ing taxonom ic analysis of cluster C , the  following cri­
terion can be used in order to  decide which tax lD  to associate to  C . The set T  
of ta x lD ’s of the  list of proteins th a t EGWproxy associates to  C  is considered. 
T hen the  final tax lD  t f in of C  is com puted as

, . wp 
t f i n = argteT  m in 2 ^  W

p w ith  tax lD  equal to  t p

Figure 2 shows the  ou tpu t of EGWproxy on one of the  datasets used in our 
experim ents (M3, see Section 3): it plots the  list (of proteins) size (x-axis) versus 
the  num ber of lists of th a t size (y-axis). Similar trends are obtained on the  other 
two datasets considered in our experim ents. On these datase ts the  length of the 
resulting protein  lists rem ains 1 for more th an  half of the  clusters, while in some 
cases it becomes ra ther big (this is more likely to  happen for small clusters).

F ig . 2. P lo t of size of protein  lists (x-axis) versus num ber of lists of th a t size 
(y-axis) ou tpu t by EGWproxy on datase t M3.

2 .5  C o m p a r is o n  o f  A lg o r i th m s

GWproxy and LWproxy use different clustering heuristics: th e  first algorithm  
searches a clustering in a fixed searching space characterized by the  sets of reads 
covered by each protein  in R, while LWproxy constructs increm entally clusters



of reads and of proteins. Furtherm ore, GWproxy scores proteins using bit and 
identities score, while LWproxy uses only b it score. Finally, GWproxy scores each 
protein  globally, th a t is, using all the  reads it covers, while LWproxy scores only 
the proteins of a cluster, where each protein  is scored locally using the  reads it 
covers th a t belong to  th a t cluster.

B oth  EGWproxy and LWproxy associates to  each cluster of reads one set of 
proteins. However, while LWproxy selects one protein  as final representative of a 
cluster, EGWproxy employs an ensemble technique in order to  exploit inform ation 
of all the  proteins of th a t set.

A drawback of LWproxy is th a t results m ay be affected by the choice of 
the read used in the first step  of the algorithm , as illustrated  by the  following 
example.

Example 3. Consider the  toy  problem  in Exam ple 1. If LWproxy s ta rts  from r i  
as seed for C 1 then  only r 2 is added to  C 1, since r 2 (best h it of each of the other 
reads) does not occur in the list of protein  associated to  C i . T hen  construction of 
a second cluster, say C 2 begins. C 2 is filled w ith the rest of the reads (r3, r 4, r 5).

W hile in the  experim ents here conducted this drawback does not seem to 
affect the  results, it rem ains to  be investigated w hether th is drawback does not 
affect results in general.

A drawback of GWproxy is th a t it ou tpu ts only one solution, while in general 
there m ay be more "optim al” clustering of reads. This is because the weighted 
set covering problem  seeks one optim al solution, not the set of all optim al so­
lutions. EGWproxy tries to  overcome th is drawback by using a post-processing 
step, followed by the application of an ensemble technique for merging m ultiple 
solutions. However, the post-processing step  acts only on the set of proteins, 
while the  clusters of reads rem ain those produced by GWproxy. It rem ains to  
be investigated w hether application of ensemble techniques also at the level of 
clusters of reads can improve the perform ance of the  m ethod.

3 T axonom ic A nalysis o f M etagen om e D ata

We consider three complex m etagenom e datase ts  in troduced in [3], called in the 
following M l, M2 and M3. These datase ts  were generated, respectively, from 9, 
5 and 8 genome projects, sequenced a t the Jo in t Genome In stitu te  (JG I) using 
the 454 GS20 pyrosequencing platform  th a t produces ~  100 bp reads. From 
each genome project, reads were sam pled random ly a t coverage level 0 .1 X . The 
coverage is defined as the average num ber of tim es a nucleotide is sam pled. This 
resulted in a to ta l of 35230, 28870 and 35861 reads, respectively.

Table 1 shows the nam es of the organism s and the  num ber of reads generated 
for the M1 datase t. The reader is referred to  [3] for a detailed description of all 
the  datasets.

In our experim ents we use the  NR3 (non-redundant) protein  sequence database 
as reference database for BLASTx. The param eters of the  external software we

3 Publicly available at f tp ://ftp .ncb i.n lm .n ih .gov /b last/db .

ftp://ftp.ncbi.nlm.nih.gov/blast/db


Id. Organism genome size (bp) reads sampled
a Clostridium phytofermentans ISDg 4 533 512 4638
b Prochlorococcus marinus NATL2A 1 842 899 1866
c Lactobacillus reuteri 100-23 2 174 299 2371
d Caldicellulosiruptor saccharolyticus DSM 8903 2 970 275 2950
e Clostridium sp. OhILAs 2 997 608 2934
f Herpetosiphon aurantiacus ATCC 23779 6 605 151 6937
g Bacillus weihenstephanensis KBAB4 5 602 503 4158
h Halothermothrix orenii H 168 2 578 146 2698
i Clostridium cellulolyticum H10 3 958 683 3978

T a b le  1. C haracteristics of the organism s used in the  experim ents: the  identifier 
and nam e of the  organism, the  size of its genome and the to ta l num ber of reads 
sam pled (M1 dataset).

used are set as follows. For BLASTx the  default param eters were used. In all 
experim ents we used Evalue cutoff E  =  10- 6 . Moreover, W SCP was run  with 
pre-processing (— p), num ber of iterations equal to  1000 (—x1000), one ten th  of 
the best actual cover used as sta rtin g  p artia l solution (—a0.1), and 150 columns 
to  be selected for building the initial partia l cover a t the first iteration  (—6150). 
For lack of space, we refer to  [10] for a detailed description of the W SC P program .

3.1  R e s u l ts

We ex trac t taxonom ic inform ation from each m etagenom e d a tase t as follows. 
For LWproxy and GWproxy each cluster of reads is represented by one protein. 
The taxID  of such protein  is used as taxonom ic inform ation of th a t cluster. For 
EGWproxy the list of proteins associated to  each cluster is transform ed into one 
taxID  as described in Section 2.4.

In this way, the m etagenom ic d a ta  is transform ed into a set of tax ID ’s of 
proteins, one for each cluster of reads. Taxonomic inform ation is then  retrieved 
from the NCBI taxonom y (see h ttp ://w w w .n c b i.n lm .n ih .g o v /T a x o n o m y /). 
The NCBI Taxonomy database is a curated  set of taxonom ic classifications for 
all the  organism s th a t are represented in GenBank. Each taxon in the  database 
is associated w ith a num erical unique identifier called taxID . In the present anal­
ysis, the  taxonom ic inform ation of these known proxygenes is used to  determ ine 
the taxonom ic content of the  m etagenom ic data.

We visualize the  resulting taxonom ic inform ation in two ways.

— H istogram  of phylogenetic identities, as done e.g. in [6]. Shown are the per­
centages of the  to ta l of identifiable h its assigned to  the phylogenetic groups 
obtained by m eans of the  taxID  of the  proxygenes. Here analysis a t the  class 
taxonom ic level is performed.

— G raph representation of taxonom ic d istribu tion  of reads, as done e.g. in [14]. 
Here analysis a t the  taxonom ic level of phylum  and class is perform ed, where 
resulting tax a  containing less th an  10 reads are discarded.

We apply the above techniques to  the proxygenes and tax id  obtained from the 
considered algorithm s, as well as to  the known tax id ’s of the  original m etagenom e

http://www.ncbi.nlm.nih.gov/Taxonomy/


d a ta  sets, provided by the  producers of the  benchm ark d a ta  [3]. We use these 
la tte r results as ”golden tru th ” (GT in short) to  evaluate the  m ethods.

H istogram s of phylogenetic identities at the  class level for the  th ree d a ta  sets 
are shown in Figure 3. On datase t M 1 EGWproxy achieves results most similar 
to  GT. On M 2 the  th ree m ethods perform  equally well, w ith  results close to  those 
of GT. On M 3 there  is a clear discrepancy in the  percentages ou tpu t by the  three 
m ethods and GT, where LWproxy appears slightly closer to  GT th an  the  o ther 
m ethods.

F ig . 3. Taxomonic d istribu tion  at taxonom ic class level of the  th ree datasets. 
From left to  right: M1, M2 and M3. From top  to  bottom : ”golden tru th ” , 
GWproxy, EGWproxy and LWproxy.

For lack of space, we show graphs of the  taxonom ic d istribu tion  at phylum  
and class level only for M 1 in Figure 4. Results indicate satisfactory consensus 
among the  th ree m ethods, yielding similar type of graphs. The quality  of re­
sults is satisfactory, w ith only one m ism atching subtree. Indeed, the  GT graph 
contains C y a n o b a c te r ia  a t phylum  level, while all the  graphs of the  three clus­
tering  m ethods contain P r o te o b a c te r ia  a t phylum  level. This may be possibly 
justified by the  fact th a t P r o te o b a c te r ia  is a phylum  w ith more sequenced 
representatives th an  all o ther bacterial phylia combined [3]. However, a more 
thorough investigation of the  reads assigned to  th is phylum  is required, in order



to  check w hether these reads are assigned to  C y a n o b a c te r ia  by GT. On M 2, re­
sults show relative coherence of the  taxonom ic assignm ent of the  three m ethods, 
and close sim ilarity to  GT. Indeed, a t the  phylum  level, the  three m ethods assign 
about 2% of the  to ta l am ount of reads to  an incorrect phylum  (F irm ic u te s ) . 
On M 3 the three m ethods assign about 0.1% of the  to ta l am ount of reads to  
F irm ic u te s .

F ig . 4 . Phylogenetic graph for M1. From  top  to  bottom : LWproxy, GWproxy, 
EGWproxy and ”golden tru th ” .

4 C onclusion  and Future W ork

In th is paper we com pared three m ethods for clustering reads and their appli­
cation to  taxonom ic analysis of m etagenom e data . We discuss advantages and 
drawbacks of the m ethods and applied them  to  perform  taxonom ic analysis 
of three real-life m etagenom e datase ts  w ith known taxonom ic content. Results 
of such analysis indicate satisfactory  consensus of all the three m ethods, and 
very good perform ance w ith respect to  taxonom ic d istribu tion  and phylogenetic 
content. In fu ture work we in tend to  use the results of th is investigation for de­
signing even b e tte r  clustering m ethods, in order to  ob tain  fully reliable results. 
To th is aim, we in tend to  introduce a sta tistical test for m easuring significance 
of taxonom ic assignm ent, in order to  discard assignm ents possibly due to  the



com position of the  reference proteom e database used when applying BLASTx. 
Such a test will consider not only the num ber of reads assigned to  a taxa, bu t 
also the divergence of their proxygenes as well as the nucleotide com position of 
the reads.

A c k n o w le d g e m e n ts  We would like to  th an k  M avrom m atis K onstantinos 
for providing the datase ts  in [3] as well as useful inform ation about such data.
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