123 research outputs found

    Analyzing Conflict Freedom For Multi-threaded Programs With Time Annotations

    Get PDF
    Avoiding access conflicts is a major challenge in the design of multi-threaded programs. In the context of real-time systems, the absence of conflicts can be guaranteed by ensuring that no two potentially conflicting accesses are ever scheduled concurrently.In this paper, we analyze programs that carry time annotations specifying the time for executing each statement. We propose a technique for verifying that a multi-threaded program with time annotations is free of access conflicts. In particular, we generate constraints that reflect the possible schedules for executing the program and the required properties. We then invoke an SMT solver in order to verify that no execution gives rise to concurrent conflicting accesses. Otherwise, we obtain a trace that exhibits the access conflict.Comment: http://journal.ub.tu-berlin.de/eceasst/article/view/97

    Inductive Program Synthesis via Iterative Forward-Backward Abstract Interpretation

    Full text link
    A key challenge in example-based program synthesis is the gigantic search space of programs. To address this challenge, various work proposed to use abstract interpretation to prune the search space. However, most of existing approaches have focused only on forward abstract interpretation, and thus cannot fully exploit the power of abstract interpretation. In this paper, we propose a novel approach to inductive program synthesis via iterative forward-backward abstract interpretation. The forward abstract interpretation computes possible outputs of a program given inputs, while the backward abstract interpretation computes possible inputs of a program given outputs. By iteratively performing the two abstract interpretations in an alternating fashion, we can effectively determine if any completion of each partial program as a candidate can satisfy the input-output examples. We apply our approach to a standard formulation, syntax-guided synthesis (SyGuS), thereby supporting a wide range of inductive synthesis tasks. We have implemented our approach and evaluated it on a set of benchmarks from the prior work. The experimental results show that our approach significantly outperforms the state-of-the-art approaches thanks to the sophisticated abstract interpretation techniques

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Scalability-First Pointer Analysis with Self-Tuning Context-Sensitivity

    Get PDF
    Context-sensitivity is important in pointer analysis to ensure high precision, but existing techniques suffer from unpredictable scala- bility. Many variants of context-sensitivity exist, and it is difficult to choose one that leads to reasonable analysis time and obtains high precision, without running the analysis multiple times. We present the Scaler framework that addresses this problem. Scaler efficiently estimates the amount of points-to information that would be needed to analyze each method with different variants of context-sensitivity. It then selects an appropriate variant for each method so that the total amount of points-to information is bounded, while utilizing the available space to maximize precision. Our experimental results demonstrate that Scaler achieves pre- dictable scalability for all the evaluated programs (e.g., speedups can reach 10x for 2-object-sensitivity), while providing a precision that matches or even exceeds that of the best alternative techniques

    Pluggable abstract domains for analyzing embedded software

    Get PDF
    ManuscriptMany abstract value domains such as intervals, bitwise, constants, and value-sets have been developed to support dataflow analysis. Different domains offer alternative tradeoffs between analysis speed and precision. Furthermore, some domains are a better match for certain kinds of code than others. This paper presents the design and implementation of cXprop, an analysis and transformation tool for C that implements "conditional X propagation," a generalization of the well-known conditional constant propagation algorithm where X is an abstract value domain supplied by the user. cXprop is interprocedural, context-insensitive, and achieves reasonable precision on pointer-rich codes. We have applied cXprop to sensor network programs running on TinyOS, in order to reduce code size through interprocedural dead code elimination, and to find limited-bitwidth global variables. Our analysis of global variables is supported by a novel concurrency model for interruptdriven software. cXprop reduces TinyOS application code size by an average of 9.2% and predicts an average data size reduction of 8.2% through RAM compression

    Efficient Reflection String Analysis via Graph Coloring

    Get PDF
    Static analyses for reflection and other dynamic language features have recently increased in number and advanced in sophistication. Most such analyses rely on a whole-program model of the flow of strings, through the stack and heap. We show that this global modeling of strings remains a major bottleneck of static analyses and propose a compact encoding, in order to battle unnecessary complexity. In our encoding, strings are maximally merged if they can never serve to differentiate class members in reflection operations. We formulate the problem as an instance of graph coloring and propose a fast polynomial-time algorithm that exploits the unique features of the setting (esp. large cliques, leading to hundreds of colors for realistic programs). The encoding is applied to two different frameworks for string-guided Java reflection analysis from past literature and leads to significant optimization (e.g., a ~2x reduction in the number of string-flow inferences), for a whole-program points-to analysis that uses strings

    Precision-guided context sensitivity for pointer analysis

    Get PDF
    Context sensitivity is an essential technique for ensuring high precision in Java pointer analyses. It has been observed that applying context sensitivity partially, only on a select subset of the methods, can improve the balance between analysis precision and speed. However, existing techniques are based on heuristics that do not provide much insight into what characterizes this method subset. In this work, we present a more principled approach for identifying precision-critical methods, based on general patterns of value flows that explain where most of the imprecision arises in context-insensitive pointer analysis. Accordingly, we provide an efficient algorithm to recognize these flow patterns in a given program and exploit them to yield good tradeoffs between analysis precision and speed. Our experimental results on standard benchmark and real-world programs show that a pointer analysis that applies context sensitivity partially, only on the identified precision-critical methods, preserves effectively all (98.8%) of the precision of a highly-precise conventional context-sensitive pointer analysis (2-object-sensitive with a context-sensitive heap), with a substantial speedup (on average 3.4X, and up to 9.2X)

    Predictive Monitoring against Pattern Regular Languages

    Full text link
    In this paper, we focus on the problem of dynamically analysing concurrent software against high-level temporal specifications. Existing techniques for runtime monitoring against such specifications are primarily designed for sequential software and remain inadequate in the presence of concurrency -- violations may be observed only in intricate thread interleavings, requiring many re-runs of the underlying software. Towards this, we study the problem of predictive runtime monitoring, inspired by the analogous problem of predictive data race detection studied extensively recently. The predictive runtime monitoring question asks, given an execution σ\sigma, if it can be soundly reordered to expose violations of a specification. In this paper, we focus on specifications that are given in regular languages. Our notion of reorderings is trace equivalence, where an execution is considered a reordering of another if it can be obtained from the latter by successively commuting adjacent independent actions. We first show that the problem of predictive admits a super-linear lower bound of O(nα)O(n^\alpha), where nn is the number of events in the execution, and α\alpha is a parameter describing the degree of commutativity. As a result, predictive runtime monitoring even in this setting is unlikely to be efficiently solvable. Towards this, we identify a sub-class of regular languages, called pattern languages (and their extension generalized pattern languages). Pattern languages can naturally express specific ordering of some number of (labelled) events, and have been inspired by popular empirical hypotheses, the `small bug depth' hypothesis. More importantly, we show that for pattern (and generalized pattern) languages, the predictive monitoring problem can be solved using a constant-space streaming linear-time algorithm
    corecore