34,379 research outputs found

    Phase Behavior of Columnar DNA Assemblies

    Get PDF
    The pair interaction between two stiff parallel linear DNA molecules depends not only on the distance between their axes but on their azimuthal orientation. The positional and orientational order in columnar B-DNA assemblies in solution is investigated, based on the DNA-DNA electrostatic pair potential that takes into account DNA helical symmetry and the amount and distribution of adsorbed counterions. A phase diagram obtained by lattice sum calculations predicts a variety of positionally and azimuthally ordered phases and bundling transitions strongly depending on the counterion adsorption patterns.Comment: 4 pages, 3 figures, submitted to PR

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur

    Phase behavior of parallel hard cylinders

    Get PDF
    We test the performance of a recently proposed fundamental measure density functional of aligned hard cylinders by calculating the phase diagram of a monodisperse fluid of these particles. We consider all possible liquid crystalline symmetries, namely nematic, smectic and columnar, as well as the crystalline phase. For this purpose we introduce a Gaussian parameterization of the density profile and use it to minimize numerically the functional. We also determine, from the analytic expression for the structure factor of the uniform fluid, the bifurcation points from the nematic to the smectic and columnar phases. The equation of state, as obtained from functional minimization, is compared to the available Monte Carlo simulation. The agreement is is very good, nearly perfect in the description of the inhomogeneous phases. The columnar phase is found to be metastable with respect to the smectic or crystal phases, its free energy though being very close to that of the stable phases. This result justifies the observation of a window of stability of the columnar phase in some simulations, which disappears as the size of the system increases. The only important deviation between theory and simulations shows up in the location of the nematic-smectic transition. This is the common drawback of any fundamental measure functional of describing the uniform phase just with the accuracy of scaled particle theory.Comment: 17 pages, 5 figure

    Phase Behavior of Bent-Core Molecules

    Full text link
    Recently, a new class of smectic liquid crystal phases (SmCP phases) characterized by the spontaneous formation of macroscopic chiral domains from achiral bent-core molecules has been discovered. We have carried out Monte Carlo simulations of a minimal hard spherocylinder dimer model to investigate the role of excluded volume interations in determining the phase behavior of bent-core materials and to probe the molecular origins of polar and chiral symmetry breaking. We present the phase diagram as a function of pressure or density and dimer opening angle ψ\psi. With decreasing ψ\psi, a transition from a nonpolar to a polar smectic phase is observed near ψ=167\psi = 167^{\circ}, and the nematic phase becomes thermodynamically unstable for ψ<135\psi < 135^{\circ}. No chiral smectic or biaxial nematic phases were found.Comment: 4 pages Revtex, 3 eps figures (included

    Phase Behavior of strongly associating systems

    Get PDF
    The modeling of associating fluids has been an active area of research for several decades. Attention has gradually shifted from the so called chemical theories, where molecular association is treated as a chemical reaction, to molecular models where association naturally arises from strong attractive intermolecular forces; among the last ones the Statistical Associating Fluid Theory (SAFT) and related approaches are becoming very popular. We will present calculations performed with the soft-SAFT EoS [F.J. Blas and L.F. Vega, Ind. Eng. Chem. Res. 37 (1998) 660-674.] to simulate the equilibrium thermodynamic properties of the acetic acid and the nitriles family (two classes of strongly associating compounds) as well as their mixtures[K. Jackowski and E. Wielogorska, Journal of Molecular Structure355 (1995) 287-290.]. Carboxylic acids form stable double hydrogen bridged dimers which in the gas phase exist in equilibrium with the monomers. Molecular association in liquid phase of the nitriles family is interesting as they are important organic solvents which are soluble in water without any limits. Pure-component molecular parameters are obtained by fitting the equation to available experimental data. The equation enables to search for physical trends, allowing the transferability of the parameters. The complex behavior of these mixtures is also investigated with the same approach

    Phase behavior of ionic liquid crystals

    Full text link
    Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied

    Equilibrium phase behavior of polydisperse hard spheres

    Full text link
    We calculate the phase behavior of hard spheres with size polydispersity, using accurate free energy expressions for the fluid and solid phases. Cloud and shadow curves, which determine the onset of phase coexistence, are found exactly by the moment free energy method, but we also compute the complete phase diagram, taking full account of fractionation effects. In contrast to earlier, simplified treatments we find no point of equal concentration between fluid and solid or re-entrant melting at higher densities. Rather, the fluid cloud curve continues to the largest polydispersity that we study (14%); from the equilibrium phase behavior a terminal polydispersity can thus only be defined for the solid, where we find it to be around 7%. At sufficiently large polydispersity, fractionation into several solid phases can occur, consistent with previous approximate calculations; we find in addition that coexistence of several solids with a fluid phase is also possible

    Electroneutrality and Phase Behavior of Colloidal Suspensions

    Full text link
    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-H\"uckel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Linearized theories then predict bulk phase separation of deionized suspensions only when expanded about a physically consistent (closed) reference system. Lower-dimensional systems (e.g., monolayers, small clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.Comment: 12 pages, 5 figures. Discussion clarified, references adde

    Phase behavior of three-component ionic fluids

    Full text link
    We study the phase behavior of solutions consisting of positive and negative ions of valence z to which a third ionic species of valence Z>z is added. Using a discretized Debye-Hueckel theory, we analyze the phase behavior of such systems for different values of the ratio Z/z. We find, for Z/z>1.934, a three-phase coexistence region and, for Z/z>2, a closed (reentrant) coexistence loop at high temperatures. We characterize the behavior of these ternary ionic mixtures as function of charge asymmetry and temperature, and show the complete phase diagrams for the experimentally relevant cases of Z/z=2 and Z/z=3, corresponding to addition of divalent and trivalent ions to monovalent ionic fluids, respectively.Comment: 6 pages, 4 figures; to appear in the European Physical Journal
    corecore