33 research outputs found

    Making distributed computing infrastructures interoperable and accessible for e-scientists at the level of computational workflows

    Get PDF
    As distributed computing infrastructures evolve, and as their take up by user communities is growing, the importance of making different types of infrastructures based on a heterogeneous set of middleware interoperable is becoming crucial. This PhD submission, based on twenty scientific publications, presents a unique solution to the challenge of the seamless interoperation of distributed computing infrastructures at the level of workflows. The submission investigates workflow level interoperation inside a particular workflow system (intra-workflow interoperation), and also between different workflow solutions (inter-workflow interoperation). In both cases the interoperation of workflow component execution and the feeding of data into these components workflow components are considered. The invented and developed framework enables the execution of legacy applications and grid jobs and services on multiple grid systems, the feeding of data from heterogeneous file and data storage solutions to these workflow components, and the embedding of non-native workflows to a hosting meta-workflow. Moreover, the solution provides a high level user interface that enables e-scientist end-users to conveniently access the interoperable grid solutions without requiring them to study or understand the technical details of the underlying infrastructure. The candidate has also developed an application porting methodology that enables the systematic porting of applications to interoperable and interconnected grid infrastructures, and facilitates the exploitation of the above technical framework

    SZTAKI desktop grid: building a scalable, secure platform for desktop grid computing

    Get PDF
    In this paper we present a concept how separate desktop grids can be used as building blocks for larger scale grids by organizing them in a hierarchical tree. We describe an enhanced security model which satisfies the requirements of the hierarchical setup and is aimed for real-world deployment

    Parallelization of Littlewood-Richardson Coefficients Computation and its Integration into the BonjourGrid Meta-Desktop Grid Middleware

    No full text
    International audienceThe aim of this paper is to show how to parallelize a compute intensive application in mathematics (Group Theory) for an institutional Desktop Grid platform coordinated by a meta-grid middleware named BonjourGrid. The paper is twofold: first of all, it shows how to parallelize a sequential program for a multicore CPU which participates in the computation and second it demonstrates the effort for launching multiple instances of the solutions for the mathematical problem with the BonjourGrid middleware. BonjourGrid is a fully decentralized Desktop Grid middleware. The main results of the paper are: a) an efficient multi-threaded version of a sequential program to compute Littlewood- Richardson coefficients, namely the Multi-LR program and b) a proof of concept, centered around the user needs, for the BonjourGrid middleware dedicated to coordinate multiple instances of programsfor Desktop Grids and with the help of Multi-LR. In this paper, the scientific work consists in starting from a model for the solution of a compute intensive problem in mathematics, to incorporate the concrete model into a middleware and running it on commodity PCs platform managed by an innovative meta Desktop Grid middleware

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    Computational models for expressive dimensional typography

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1999.Includes bibliographical references (p. 83-84).This thesis research explores the prospect of typographic forms, based on custom computational models, which can be faithfully realized only in a three-dimensional, interactive environment. These new models allow for manipulation of letter-form attributes including visual display, scale, two-dimensional structure and three dimensional sculptural form. In this research, each computational model must accommodate the variation in letter shapes, while trying to balance functional flexibility with the beauty and legibility of fine typography. In most cases, this thesis work approaches typography at the level of a single letter, looking at ways we can build living, expressive textual environments on the computer display.Peter Sungil Cho.S.M
    corecore