74 research outputs found

    Role of independent component analysis in intelligent ECG signal processing

    Get PDF
    The Electrocardiogram (ECG) reflects the activities and the attributes of the human heart and reveals very important hidden information in its structure. The information is extracted by means of ECG signal analysis to gain insights that are very crucial in explaining and identifying various pathological conditions. The feature extraction process can be accomplished directly by an expert through, visual inspection of ECGs printed on paper or displayed on a screen. However, the complexity and the time taken for the ECG signals to be visually inspected and manually analysed means that it‟s a very tedious task thus yielding limited descriptions. In addition, a manual ECG analysis is always prone to errors: human oversights. Moreover ECG signal processing has become a prevalent and effective tool for research and clinical practices. A typical computer based ECG analysis system includes a signal preprocessing, beats detection and feature extraction stages, followed by classification.Automatic identification of arrhythmias from the ECG is one important biomedical application of pattern recognition. This thesis focuses on ECG signal processing using Independent Component Analysis (ICA), which has received increasing attention as a signal conditioning and feature extraction technique for biomedical application. Long term ECG monitoring is often required to reliably identify the arrhythmia. Motion induced artefacts are particularly common in ambulatory and Holter recordings, which are difficult to remove with conventional filters due to their similarity to the shape of ectopic xiiibeats. Feature selection has always been an important step towards more accurate, reliable and speedy pattern recognition. Better feature spaces are also sought after in ECG pattern recognition applications. Two new algorithms are proposed, developed and validated in this thesis, one for removing non-trivial noises in ECGs using the ICA and the other deploys the ICA extracted features to improve recognition of arrhythmias. Firstly, independent component analysis has been studiedand found effective in this PhD project to separate out motion induced artefacts in ECGs, the independent component corresponding to noise is then removed from the ECG according to kurtosis and correlation measurement.The second algorithm has been developed for ECG feature extraction, in which the independent component analysis has been used to obtain a set of features, or basis functions of the ECG signals generated hypothetically by different parts of the heart during the normal and arrhythmic cardiac cycle. ECGs are then classified based on the basis functions along with other time domain features. The selection of the appropriate feature set for classifier has been found important for better performance and quicker response. Artificial neural networks based pattern recognition engines are used to perform final classification to measure the performance of ICA extracted features and effectiveness of the ICA based artefacts reduction algorithm.The motion artefacts are effectively removed from the ECG signal which is shown by beat detection on noisy and cleaned ECG signals after ICA processing. Using the ICA extracted feature sets classification of ECG arrhythmia into eight classes with fewer independent components and very high classification accuracy is achieved

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    PORTABLE HEART ATTACK WARNING SYSTEM BY MONITORING THE ST SEGMENT VIA SMARTPHONE ELECTROCARDIOGRAM PROCESSING

    Get PDF
    Cardiovascular disease (CVD) is the single leading cause of death in both developed and developing countries. The most deadly CVD is heart attack, which 7,900,000 Americans suffer each year, and 16% of cases are fatal. The Electrocardiogram (ECG) is the most widely adopted clinical tool to diagnose and assess the risk of CVD. Early diagnosis of heart attacks, by detecting abnormal ST segments within one hour of the onset of symptoms, is necessary for successful treatment. In clinical settings, resting ECGs are used to monitor patients automatically. However, given the sporadic nature of heart attacks, it is unlikely that the patient will be in a clinical setting at the onset of a heart attack. While Holter-based portable monitoring solutions offer 24 to 48-hour ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline.Processing ECG signals on a smartphone-based platform would unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis for early heart attack warning. Furthermore, smartphones serve as an ideal platform for telemedicine and alert systems and have a portable form factor. To detect heart attacks via ECG processing, a real-time, accurate, context aware ST segment monitoring algorithm, based on principal component analysis and a support vector machine classifier is proposed and evaluated. Real-time feedback is provided by implementing a state-of-the-art, multilevel warning system ranging from audible notifications to text messages to points of contacts with the GPS location of the user. The smartphone test bed makes use of a novel, real-time verification system using a streaming database to analyze the strain of heart attack detection system under normal phone operation. Furthermore, the entire system is prototyped and fully functional, running on a smartphone to demonstrate the real-time, portable functionality of the platform. Experimental results show that a classification accuracy of 96% for ST segment elevation of individual beats can be achieved and all ST episodes were correctly detected during testing with the European ST database

    A real-time data mining technique applied for critical ECG rhythm on handheld device

    Get PDF
    Sudden cardiac arrest is often caused by ventricular arrhythmias and these episodes can lead to death for patients with chronic heart disease. Hence, detection of such arrhythmia is crucial in mobile ECG monitoring. In this research, a systematic study is carried out to investigate the possible limitations that are preventing the realisation of a real-time ECG arrhythmia data-mining algorithm suitable for application on mobile devices. Based on the findings, a computationally lightweight algorithm is devised and tested. Ventricular tachycardia (VT) is the most common type of ventricular arrhythmias and is also the deadliest.. A ventricular tachycardia (VT) episode is due to a disorder ofthe regular contractions ofthe heart. It occurs when the human heart ventricles generate a rapid heartbeat which disrupts the regular physiology cycle. The normal sinus rhythm (NSR) of a regular human heart beat signal has its signature PQRST waveform and in regular pattern. Whereas, the characteristics of a ventricular tachycardia (VT) signal waveforms are short R-R intervals, widen QRS duration and the absence of P-waves. Each type of ECG arrhythmia previously mentioned has a unique waveform signature that can be exploited as features to be used for the realization of an automated ECG analysis application. In order to extract this known ECG waveform feature, a time-domain analysis is proposed for feature extraction. Cross-correlation allows the computation of a co-efficient that quantifies the similarity between two times-series. Hence, by cross-correlating known ECG waveform templates with an unknown ECG signal, the coefficient can indicate the similarities. In previous published work, a preliminary study was carried out. The cross-correlation coefficient wave (CCW) technique was introduced for feature extraction. The outcome ofthis work presents CCW as a promising feature to differentiate between NSR, VT and Vfib signals. Moreover, cross-correlation computation does not require high computational overhead. Next, an automated detection algorithm requires a classification mechanism to make sense of the feature extracted. A further study is conducted and published, a fuzzy set k-NN classifier was introduced for the classification of CCW feature extracted from ECG signal segments. A training set of size 180 is used. The outcome of the study indicates that the computationally light-weight fuzzy k-NN classifier can reliably classify between NSR and VT signals, the class detection rate is low for classifying Vfib signal using the fuzzy k-NN classifier. Hence, a modified algorithm known as fuzzy hybrid classifier is proposed. By implementing an expert knowledge based fuzzy inference system for classification of ECG signal; the Vfib signal detection rate was improved. The comparison outcome was that the hybrid fuzzy classifier is able to achieve 91.1% correct rate, 100% sensitivity and 100% specificity. The previously mentioned result outperforms the compared classifiers. The proposed detection and classification algorithm is able to achieve high accuracy in analysing ECG signal feature of NSR, VT and Vfib nature. Moreover, the proposed classifier is successfully implemented on a smart mobile device and it is able to perform data-mining of the ECG signal with satisfiable results

    Signal processing for automatic heartbeat classification and patient adaptation in the electrocardiogram

    Get PDF
    Las enfermedades cardiovasculares son en la actualidad la mayor causa de muerte individual en los países desarrollados, por lo tanto cualquier avance en las metodologías para el diagnóstico podrían mejorar la salud de muchas personas. Dentro de las enfermedades cardiovasculares, la muerte súbita cardíaca es una de las causas de muerte más importantes, por su número y por el impacto social que provoca. Sin lugar a duda se trata uno de los grandes desafíos de la cardiología moderna. Hay evidencias para relacionar las arritmias con la muerte súbita cardíaca. Por otro lado, la clasificación de latidos en el electrocardiograma (ECG) es un análisis previo para el estudio de las arritmias. El análisis del ECG proporciona una técnica no invasiva para el estudio de la actividad del corazón en sus distintas condiciones. Particularmente los algoritmos automáticos de clasificación se focalizan en el análisis del ritmo y la morfología del ECG, y específicamente en las variaciones respecto a la normalidad. Justamente, las variaciones en el ritmo, regularidad, lugar de origen y forma de conducción de los impulsos cardíacos, se denominan arritmias. Mientras que algunas arritmias representan una amenaza inminente (Ej. fibrilación ventricular), existen otras más sutiles que pueden ser una amenaza a largo plazo sin el tratamiento adecuado. Es en estos últimos casos, que registros ECG de larga duración requieren una inspección cuidadosa, donde los algoritmos automáticos de clasificación representan una ayuda significativa en el diagnóstico. En la última década se han desarrollado algunos algoritmos de clasificación de ECG, pero solo unos pocos tienen metodologías y resultados comparables, a pesar de las recomendaciones de la AAMI para facilitar la resolución de estos problemas. De dichos métodos, algunos funcionan de manera completamente automática, mientras que otros pueden aprovechar la asistencia de un experto para mejorar su desempeño. La base de datos utilizada en todos estos trabajos ha sido la MIT-BIH de arritmias. En cuanto a las características utilizadas, los intervalos RR fueron usados por casi todos los grupos. También se utilizaron muestras del complejo QRS diezmado, o transformado mediante polinomios de Hermite, transformada de Fourier o la descomposición wavelet. Otros grupos usaron características que integran la información presente en ambas derivaciones, como el máximo del vectocardiograma del complejo QRS, o el ángulo formado en dicho punto. El objetivo de esta tesis ha sido estudiar algunas metodologías para la clasificación de latidos en el ECG. En primer lugar se estudiaron metodologías automáticas, con capacidad para contemplar el análisis de un número arbitrario de derivaciones. Luego se estudió la adaptación al paciente y la posibilidad de incorporar la asistencia de un experto para mejorar el rendimiento del clasificador automático. En principio se desarrolló y validó un clasificador de latidos sencillo, que utiliza características seleccionadas en base a una buena capacidad de generalización. Se han considerado características de la serie de intervalos RR (distancia entre dos latidos consecutivos), como también otras calculadas a partir de ambas derivaciones de la señal de ECG, y escalas de su transformada wavelet. Tanto el desempeño en la clasificación como la capacidad de generalización han sido evaluados en bases de datos públicas: la MIT-BIH de arritmias, la MIT-BIH de arritmias supraventriculares y la del Instituto de Técnicas Cardiológicas de San Petersburgo (INCART). Se han seguido las recomendaciones de la Asociación para el Avance de la Instrumentación Médica (AAMI) tanto para el etiquetado de clases como para la presentación de los resultados. Para la búsqueda de características se adoptó un algoritmo de búsqueda secuencial flotante, utilizando diferentes criterios de búsqueda, para luego elegir el modelo con mejor rendimiento y capacidad de generalización en los sets de entrenamiento y validación. El mejor modelo encontrado incluye 8 características y ha sido entrenado y evaluado en particiones disjuntas de la MIT-BIH de arritmias. Todas las carácterísticas del modelo corresponden a mediciones de intervalos temporales. Esto puede explicarse debido a que los registros utilizados en los experimentos no siempre contienen las mismas derivaciones, y por lo tanto la capacidad de clasificación de aquellas características basadas en amplitudes se ve seriamente disminuida. Las primeras 4 características del modelo están claramente relacionadas a la evolución del ritmo cardíaco, mientras que las otras cuatro pueden interpretarse como mediciones alternativas de la anchura del complejo QRS, y por lo tanto morfológicas. Como resultado, el modelo obtenido tiene la ventaja evidente de un menor tamaño, lo que redunda tanto en un ahorro computacional como en una mejor estimación de los parámetros del modelo durante el entrenamiento. Como ventaja adicional, este modelo depende exclusivamente de la detección de cada latido, haciendo este clasificador especialmente útil en aquellos casos donde la delineación de las ondas del ECG no puede realizarse de manera confiable. Los resultados obtenidos en el set de evaluación han sido: exactitud global (A) de 93%; para latidos normales: sensibilidad (S) 95% valor predictivo positivo (P^{+}) 98%; para latidos supraventriculares, S 77%, P^{+} 39%; y para latidos ventriculares S 81%, P^{+} 87%. Para comprobar la capacidad de generalización, se evaluó el rendimiento en la INCART obteniéndose resultados comparables a los del set de evaluación. El modelo de clasificación obtenido utiliza menos características, y adicionalmente presentó mejor rendimiento y capacidad de generalización que otros representativos del estado del arte. Luego se han estudiado dos mejoras para el clasificador desarrollado en el párrafo anterior. La primera fue adaptarlo a registros ECG de un número arbitrario de derivaciones, o extensión multiderivacional. En la segunda mejora se buscó cambiar el clasificador lineal por un perceptrón multicapa no lineal (MLP). Para la extensión multiderivacional se estudió si conlleva alguna mejora incluir información del ECG multiderivacional en el modelo previamente validado. Dicho modelo incluye características calculadas de la serie de intervalos RR y descriptores morfológicos calculados en la transformada wavelet de cada derivación. Los experimentos se han realizado en la INCART, disponible en Physionet, mientras que la generalización se corroboró en otras bases de datos públicas y privadas. En todas las bases de datos se siguieron las recomendaciones de la AAMI para el etiquetado de clases y presentación de resultados. Se estudiaron varias estrategias para incorporar la información adicional presente en registros de 12 derivaciones. La mejor estrategia consistió en realizar el análisis de componentes principales a la transformada wavelet del ECG. El rendimiento obtenido con dicha estrategia fue: para latidos normales: S98%, P^{+}93%; para latidos supraventriculares, S86%, P^{+}91%; y para latidos ventriculares S90%, P^{+}90%. La capacidad de generalización de esta estrategia se comprobó tras evaluarla en otras bases de datos, con diferentes cantidades de derivaciones, obteniendo resultados comparables. En conclusión, se mejoró el rendimiento del clasificador de referencia tras incluir la información disponible en todas las derivaciones disponibles. La mejora del clasificador lineal por medio de un MLP se realizó siguiendo una metodología similar a la descrita más arriba. El rendimiento obtenido fue: A 89%; para latidos normales: S90%, P^{+}99% para latidos supraventriculares, S83%, P^{+}34%; para latidos ventriculares S87%, P^{+}76%. Finalmente estudiamos un algoritmo de clasificación basado en las metodologías descritas en los anteriores párrafos, pero con la capacidad de mejorar su rendimiento mediante la ayuda de un experto. Se presentó un algoritmo de clasificación de latidos en el ECG adaptable al paciente, basado en el clasificador automático previamente desarrollado y un algoritmo de clustering. Tanto el clasificador automático, como el algoritmo de clustering utilizan características calculadas de la serie de intervalos RR y descriptores de morfología calculados de la transformada wavelet. Integrando las decisiones de ambos clasificadores, este algoritmo puede desempeñarse automáticamente o con varios grados de asistencia. El algoritmo ha sido minuciosamente evaluado en varias bases de datos para facilitar la comparación. Aún en el modo completamente automático, el algoritmo mejora el rendimiento del clasificador automático original; y con menos de 2 latidos anotados manualmente (MAHB) por registro, el algoritmo obtuvo una mejora media para todas las bases de datos del 6.9% en A, de 6.5\%S y de 8.9\% en P^{+}. Con una asistencia de solo 12 MAHB por registro resultó en una mejora media de 13.1\%en A, de 13.9\% en S y de 36.1\% en P^{+}. En el modo asistido, el algoritmo obtuvo un rendimiento superior a otros representativos del estado del arte, con menor asistencia por parte del experto. Como conclusiones de la tesis, debemos enfatizar la etapa del diseño y análisis minucioso de las características a utilizar. Esta etapa está íntimamente ligada al conocimiento del problema a resolver. Por otro lado, la selección de un subset de características ha resultado muy ventajosa desde el punto de la eficiencia computacional y la capacidad de generalización del modelo obtenido. En último lugar, la utilización de un clasificador simple o de baja capacidad (por ejemplo funciones discriminantes lineales) asegurará que el modelo de características sea responsable en mayor parte del rendimiento global del sistema. Con respecto a los sets de datos para la realización de los experimentos, es fundamental contar con un elevado numero de sujetos. Es importante incidir en la importancia de contar con muchos sujetos, y no muchos registros de pocos sujetos, dada la gran variabilidad intersujeto observada. De esto se desprende la necesidad de evaluar la capacidad de generalización del sistema a sujetos no contemplados durante el entrenamiento o desarrollo. Por último resaltaremos la complejidad de comparar el rendimiento de clasificadores en problemas mal balanceados, es decir que las clases no se encuentras igualmente representadas. De las alternativas sugeridas en esta tesis probablemente la más recomendable sea la matriz de confusión, ya que brinda una visión completa del rendimiento del clasificador, a expensas de una alta redundancia. Finalmente, luego de realizar comparaciones justas con otros trabajos representativos del estado actual de la técnica, concluimos que los resultados presentados en esta tesis representan una mejora en el campo de la clasificación de latidos automática y adaptada al paciente, en la señal de ECG

    ECG analysis and classification using CSVM, MSVM and SIMCA classifiers

    Get PDF
    Reliable ECG classification can potentially lead to better detection methods and increase accurate diagnosis of arrhythmia, thus improving quality of care. This thesis investigated the use of two novel classification algorithms: CSVM and SIMCA, and assessed their performance in classifying ECG beats. The project aimed to introduce a new way to interactively support patient care in and out of the hospital and develop new classification algorithms for arrhythmia detection and diagnosis. Wave (P-QRS-T) detection was performed using the WFDB Software Package and multiresolution wavelets. Fourier and PCs were selected as time-frequency features in the ECG signal; these provided the input to the classifiers in the form of DFT and PCA coefficients. ECG beat classification was performed using binary SVM. MSVM, CSVM, and SIMCA; these were subsequently used for simultaneously classifying either four or six types of cardiac conditions. Binary SVM classification with 100% accuracy was achieved when applied on feature-reduced ECG signals from well-established databases using PCA. The CSVM algorithm and MSVM were used to classify four ECG beat types: NORMAL, PVC, APC, and FUSION or PFUS; these were from the MIT-BIH arrhythmia database (precordial lead group and limb lead II). Different numbers of Fourier coefficients were considered in order to identify the optimal number of features to be presented to the classifier. SMO was used to compute hyper-plane parameters and threshold values for both MSVM and CSVM during the classifier training phase. The best classification accuracy was achieved using fifty Fourier coefficients. With the new CSVM classifier framework, accuracies of 99%, 100%, 98%, and 99% were obtained using datasets from one, two, three, and four precordial leads, respectively. In addition, using CSVM it was possible to successfully classify four types of ECG beat signals extracted from limb lead simultaneously with 97% accuracy, a significant improvement on the 83% accuracy achieved using the MSVM classification model. In addition, further analysis of the following four beat types was made: NORMAL, PVC, SVPB, and FUSION. These signals were obtained from the European ST-T Database. Accuracies between 86% and 94% were obtained for MSVM and CSVM classification, respectively, using 100 Fourier coefficients for reconstructing individual ECG beats. Further analysis presented an effective ECG arrhythmia classification scheme consisting of PCA as a feature reduction method and a SIMCA classifier to differentiate between either four or six different types of arrhythmia. In separate studies, six and four types of beats (including NORMAL, PVC, APC, RBBB, LBBB, and FUSION beats) with time domain features were extracted from the MIT-BIH arrhythmia database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb) respectively. Between 10 and 30 PCs, coefficients were selected for reconstructing individual ECG beats in the feature selection phase. The average classification accuracy of the proposed scheme was 98.61% and 97.78 % using the limb lead and precordial lead datasets, respectively. In addition, using MSVM and SIMCA classifiers with four ECG beat types achieved an average classification accuracy of 76.83% and 98.33% respectively. The effectiveness of the proposed algorithms was finally confirmed by successfully classifying both the six beat and four beat types of signal respectively with a high accuracy ratio

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine
    • …
    corecore