154 research outputs found

    Role of biases in neural network models

    Get PDF

    A Neural Networks Committee for the Contextual Bandit Problem

    Get PDF
    This paper presents a new contextual bandit algorithm, NeuralBandit, which does not need hypothesis on stationarity of contexts and rewards. Several neural networks are trained to modelize the value of rewards knowing the context. Two variants, based on multi-experts approach, are proposed to choose online the parameters of multi-layer perceptrons. The proposed algorithms are successfully tested on a large dataset with and without stationarity of rewards.Comment: 21st International Conference on Neural Information Processin

    Combined optimization algorithms applied to pattern classification

    Get PDF
    Accurate classification by minimizing the error on test samples is the main goal in pattern classification. Combinatorial optimization is a well-known method for solving minimization problems, however, only a few examples of classifiers axe described in the literature where combinatorial optimization is used in pattern classification. Recently, there has been a growing interest in combining classifiers and improving the consensus of results for a greater accuracy. In the light of the "No Ree Lunch Theorems", we analyse the combination of simulated annealing, a powerful combinatorial optimization method that produces high quality results, with the classical perceptron algorithm. This combination is called LSA machine. Our analysis aims at finding paradigms for problem-dependent parameter settings that ensure high classifica, tion results. Our computational experiments on a large number of benchmark problems lead to results that either outperform or axe at least competitive to results published in the literature. Apart from paxameter settings, our analysis focuses on a difficult problem in computation theory, namely the network complexity problem. The depth vs size problem of neural networks is one of the hardest problems in theoretical computing, with very little progress over the past decades. In order to investigate this problem, we introduce a new recursive learning method for training hidden layers in constant depth circuits. Our findings make contributions to a) the field of Machine Learning, as the proposed method is applicable in training feedforward neural networks, and to b) the field of circuit complexity by proposing an upper bound for the number of hidden units sufficient to achieve a high classification rate. One of the major findings of our research is that the size of the network can be bounded by the input size of the problem and an approximate upper bound of 8 + √2n/n threshold gates as being sufficient for a small error rate, where n := log/SL and SL is the training set

    On the Relationship Between Generalization Error, Hypothesis Complexity, and Sample Complexity for Radial Basis Functions

    Get PDF
    In this paper, we bound the generalization error of a class of Radial Basis Function networks, for certain well defined function learning tasks, in terms of the number of parameters and number of examples. We show that the total generalization error is partly due to the insufficient representational capacity of the network (because of its finite size) and partly due to insufficient information about the target function (because of finite number of samples). We make several observations about generalization error which are valid irrespective of the approximation scheme. Our result also sheds light on ways to choose an appropriate network architecture for a particular problem

    Approximation-Generalization Trade-offs under (Approximate) Group Equivariance

    Full text link
    The explicit incorporation of task-specific inductive biases through symmetry has emerged as a general design precept in the development of high-performance machine learning models. For example, group equivariant neural networks have demonstrated impressive performance across various domains and applications such as protein and drug design. A prevalent intuition about such models is that the integration of relevant symmetry results in enhanced generalization. Moreover, it is posited that when the data and/or the model may only exhibit approximate\textit{approximate} or partial\textit{partial} symmetry, the optimal or best-performing model is one where the model symmetry aligns with the data symmetry. In this paper, we conduct a formal unified investigation of these intuitions. To begin, we present general quantitative bounds that demonstrate how models capturing task-specific symmetries lead to improved generalization. In fact, our results do not require the transformations to be finite or even form a group and can work with partial or approximate equivariance. Utilizing this quantification, we examine the more general question of model mis-specification i.e. when the model symmetries don't align with the data symmetries. We establish, for a given symmetry group, a quantitative comparison between the approximate/partial equivariance of the model and that of the data distribution, precisely connecting model equivariance error and data equivariance error. Our result delineates conditions under which the model equivariance error is optimal, thereby yielding the best-performing model for the given task and data
    • 

    corecore