381 research outputs found

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    A novel adaptive schema to facilitates playback switching technique for video delivery in dense LTE cellular heterogeneous network environments

    Get PDF
    The services of the Video on Demand (VoD) are currently based on the developments of the technology of the digital video and the network’s high speed. The files of the video are retrieved from many viewers according to the permission, which is given by VoD services. The remote VoD servers conduct this access. A server permits the user to choose videos anywhere/anytime in order to enjoy a unified control of the video playback. In this paper, a novel adaptive method is produced in order to deliver various facilities of the VoD to all mobile nodes that are moving within several networks. This process is performed via mobility modules within the produced method since it applies a seamless playback technique for retrieving the facilities of the VoD through environments of heterogeneous networks. The main components comprise two servers, which are named as the GMF and the LMF. The performance of the simulation is tested for checking clients’ movements through different networks with different sizes and speeds, which are buffered in the storage. It is found to be proven from the results that the handoff latency has various types of rapidity. The method applies smooth connections and delivers various facilities of the VoD. Meantime, the mobile device transfers through different networks. This implies that the system transports video segments easily without encountering any notable effects.In the experimental analysis for the Slow movements mobile node handoff latency (8 Km/hour or 4 m/s) ,the mobile device’s speed reaches 4m/s, the delay time ranges from 1 to 1.2 seconds in the proposed system, while the MobiVoD system ranges from 1.1 to 1.5. In the proposed technique reaches 1.1026 seconds forming the required time of a mobile device that is switching from a single network to its adjacent one. while the handoff termination average in the MobiVoD reaches 1.3098 seconds. Medium movement mobile node handoff latency (21 Km/ hour or 8 m/s) The average handoff time for the proposed system reaches 1.1057 seconds where this implies that this technique can seamlessly provide several segments of a video segments regardless of any encountered problems. while the average handoff time for the MobiVoD reaches 1.53006623 seconds. Furthermore, Fast movement mobile node handoff latency (390 Km/ hour or 20 m/s). The average time latency of the proposed technique reaches 1.0964 seconds, while the MobiVoD System reaches to 1.668225 seconds

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation
    • 

    corecore