1,262 research outputs found

    Peer-Assisted Social Media Streaming With Social Reciprocity

    Get PDF
    published_or_final_versio

    Efficient and flexible inter-overlay scheduling of media streams for multi-channel P2P streaming

    Get PDF
    Existing studies on channel bandwidth imbalance in P2P multi-channel streaming systems have been exclusively focused on inter-overlay bandwidth allocation. However, an efficient inter-overlay scheduling algorithm is still in lack for benefactors. To this end, this paper presents an inter-overlay substream scheduling algorithm compatible with various overlay meshes for active inter-overlay cooperation, through which the outbound bandwidth of benefactors can be efficiently utilized and bandwidth-deprived channels receiving benefactions can attain a better streaming quality. © 2012 IEEE.published_or_final_versionThe 2012 International Conference on Computing, Networking, and Communications (ICNC 2012), Maui, HI., 30 January-2 February 2012. In Proceedings of ICNC, 2012, p. 820-82

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Extended Equal Service and Differentiated Service Models for Peer-to-Peer File Sharing

    Full text link
    Peer-to-Peer (P2P) systems have proved to be the most effective and popular file sharing applications in recent years. Previous studies mainly focus on the equal service and the differentiated service strategies when peers have no initial data before their download. In an upload-constrained P2P file sharing system, we model both the equal service process and the differentiated service process when peers' initial data distribution satisfies some special conditions, and also show how to minimize the time to get the file to any number of peers. The proposed models can reveal the intrinsic relations among the initial data amount, the size of peer set and the minimum last finish time. By using the models, we can also provide arbitrary degree of differentiated service to a certain number of peers. We believe that our analysis process and achieved theoretical results could provide fundamental insights into studies on bandwidth allocation and data scheduling, and can give helpful reference both for improving system performance and building effective incentive mechanism in P2P file sharing systems
    corecore