32 research outputs found

    Parameterized analysis of complexity

    Get PDF

    Sparse Selfreducible Sets and Nonuniform Lower Bounds

    Get PDF
    It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in (Formula presented.), or even in (Formula presented.) that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are selfreducible? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that (Formula presented.) does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that (Formula presented.) does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of (Formula presented.) is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for (Formula presented.)

    Separating Cook Completeness from Karp-Levin Completeness Under a Worst-Case Hardness Hypothesis

    Get PDF
    We show that there is a language that is Turing complete for NP but not many-one complete for NP, under a worst-case hardness hypothesis. Our hypothesis asserts the existence of a non-deterministic, double-exponential time machine that runs in time O(2^2^n^c) (for some c > 1) accepting Sigma^* whose accepting computations cannot be computed by bounded-error, probabilistic machines running in time O(2^2^{beta * 2^n^c) (for some beta > 0). This is the first result that separates completeness notions for NP under a worst-case hardness hypothesis

    P-Selectivity, Immunity, and the Power of One Bit

    Full text link
    We prove that P-sel, the class of all P-selective sets, is EXP-immune, but is not EXP/1-immune. That is, we prove that some infinite P-selective set has no infinite EXP-time subset, but we also prove that every infinite P-selective set has some infinite subset in EXP/1. Informally put, the immunity of P-sel is so fragile that it is pierced by a single bit of information. The above claims follow from broader results that we obtain about the immunity of the P-selective sets. In particular, we prove that for every recursive function f, P-sel is DTIME(f)-immune. Yet we also prove that P-sel is not \Pi_2^p/1-immune
    corecore