Note

P-selectivity: Intersections and indices

Lane A. Hemaspaandra ${ }^{\text {a, } *, 1}$, Zhigen Jiang ${ }^{\text {b, } 2}$
${ }^{\text {a }}$ Department of Computer Science, University of Rochester, Rochester, NY 14627, USA
${ }^{\text {b }}$ Institute of Software, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Received February 1994; revised October 1994
Communicated by G. Ausiello

Abstract

The P-selective sets (Selman, 1979) are those sets for which there is a polynomial-time algorithm that, given any two strings, determines which is "more likely" to belong to the set: if either of the strings is in the set, the algorithm chooses one that is in the set. We prove that, for each k, the k-ary Boolean connectives under which the P -selective sets are closed are exactly those that are either completely degenerate or almost-completely degenerate. We determine the complexity of the index set of the r.e. P-selective sets - Σ_{3}^{0}-complete.

1. Introduction and definitions

Selman [17] defined the P-selective sets, the complexity-theoretic analogs of Jockush's [11] semi-recursive sets. A set is P-selective if it has a polynomial-time "selector" ("semi-decision") function that determines, given any two strings, one that is logically no less likely to belong to the set.

Definition 1.1 (Selman [17]). A set L is P-selective if there is a (total) polynomial-time function $f(\cdot, \cdot)$ such that $\left(\forall x, y \in \Sigma^{*}\right)[f(x, y)=x \vee f(x, y)=y]$ and $\left(\forall x, y \in \Sigma^{*}\right)$ $[(x \in L \vee y \in L) \Rightarrow f(x, y) \in L]$. We will refer to $f(\cdot, \cdot)$ as a selector function for L. We will use P -Scl to refer to the class of P -selective sets.

[^0]After the P-selective sets were defined in 1979, for just over half a decade rapid progress was made in their study [12, 13, 17-19]. There followed, for no particularly clear reason, a half decade during which little progress was made in the study of P-selectivity. However, during the past few years, brisk progress has resumed, and many open issues regarding the P -selective sets have been settled. For example, resolving issues open since Selman's seminal papers, Buhrman et al. [3] proved that a set is in P if and only if it is both P-selective and Turing self-reducible, and Buhrman et al. [2] established that the \mathbf{P}-selective sets are closed downwards under positive Turing reductions. Many other recent papers (see the survey [4]) have studied the properties of the \mathbf{P}-selective sets and of such related classes as the NP-selective sets, and have shown, for example, that NP cannot have a bounded-truth-table-complete P-selective set unless $P=N P([1],[15]$ and the paper by Agrawal and Arvind in the same proceedings as [1]), and that if multivalued NP functions have single-valued refinements then the polynomial hierarchy collapses [10].

In this paper, we study two issues regarding the P-selective sets: Boolean closure properties and index set complexity. A k-ary Boolean connective is a function $I:\left(2^{\Sigma^{*}}\right)^{k} \rightarrow 2^{\Sigma^{*}} \quad$ satisfying $\quad\left(\exists f_{I}:\{0,1\}^{k} \rightarrow\{0,1\}\right) \quad\left(\forall B_{1}, \ldots, B_{k} \subseteq \Sigma^{*}\right) \quad\left(\forall x \in \Sigma^{*}\right)$ $\left[x \in I\left(B_{1}, \ldots, B_{k}\right) \Leftrightarrow 1=f_{I}\left(\chi_{B_{1}}(x), \ldots, \chi_{B_{k}}(x)\right)\right]$, where χ_{c} represents, for each set C, the characteristic function of C. For example, intersection $\cap\left(B_{1}, B_{2}\right)={ }_{\text {def }} B_{1} \cap B_{2}$, is one of the sixteen 2-ary Boolean connectives. Since each I has a unique f_{I}, we may speak of the function f_{I} as if it were the connective itself. We say a k-ary Boolean connective I is completely degenerate if f_{I} is a constant function, and we say a k-ary Boolean connective is almost-completely degenerate if there is a $j, 1 \leqslant j \leqslant k$, such that the two $(k-1)$-ary Boolean connectives $f_{I}\left(x_{1}, x_{2}, \ldots, x_{j}, 0, x_{j 11}, \ldots, x_{k}\right)$ and $f_{I}\left(x_{1}, x_{2}, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{k}\right)$ are both completely degenerate. The P-selective sets are said to be closed under k-ary Boolean connective I if I is a k-ary Boolean connective and $\left(\forall B_{1}, \ldots, B_{k} \in \mathrm{P}-\mathrm{Sel}\right)\left[I\left(B_{1}, \ldots, B_{k}\right) \in \mathrm{P}-\mathrm{Sel}\right]$. For each k, we prove that, among the $2^{2^{k}} k$-ary Boolean connectives, the P-selective sets are closed under exactly the $2 k+2$ that are completely or almost-completely degenerate.

An important issue in recursive function theory is the index complexity of classes [16,20]. We determine that the index set of the r.e. P-selective sets, $I_{\mathrm{P} \text {-Sel }}=_{\text {def }}\{M \mid L(M)$ is P-selective $\}$, is Σ_{3}^{0}-complete. That is, determining whether Turing machines' languages are recursive and determining whether Turing machines' languages are P-selective are, in recursion-theoretic terms, equally hard.

2. Results

2.1. Intersections and other Boolean closures

For each k, we completely characterize the k-ary Boolean connectives under which the P -selective sets are closed. Our construction uses the technique of spacing a set so widely that smaller strings can be brute-forced, a technique dating back to an early paper of Kurtz [14].

Lemma 2.1. The P -selective sets are not closed under intersection.

Proof. Define $\mu(0)=2, \mu(i+1)=2^{2^{\mu(i)}}$ for each $i \geqslant 0$, and $R_{k}=\{i \mid i \in N \wedge \mu(k) \leqslant$ $i<\mu(k+1)\}$. We will implicitly use the standard correspondence between Σ^{*} and N. We define two special classes of languages:

$$
\begin{aligned}
\mathscr{C}_{1}= & \left\{A \subseteq N \mid(\forall j \geqslant 0)\left[R_{2 j} \cap A=\emptyset\right] \wedge(\forall j \geqslant 0)\left(\forall x, y \in R_{2 j+1}\right)\right. \\
& {[(x \leqslant y \wedge x \in A) \Rightarrow y \in A]\} . } \\
\mathscr{C}_{2}= & \left\{A \subseteq N \mid(\forall j \geqslant 0)\left[R_{2 j} \cap A=\emptyset\right] \wedge(\forall j \geqslant 0)\left(\forall x, y \in R_{2 j+1}\right)\right. \\
& {[(x \leqslant y \wedge y \in A) \Rightarrow x \in A]\} . }
\end{aligned}
$$

As is standard, E will denote $U_{c \geqslant 0}$ DTIME [2 $\left.2^{c n}\right]$. We claim that

$$
\begin{equation*}
\mathscr{B}_{1} \cap \mathrm{E} \subseteq \text { P-Sel. } \tag{*}
\end{equation*}
$$

To prove (*), consider an arbitrary set A in $\mathscr{C}_{1} \cap \mathrm{E}$. We define a selector function f as follows: (i) if $x, y \in R_{2 j+1}$ for some j, then let $f(x, y)=\max \{x, y\}$; (ii) if x (or y, or both) is in $R_{2 j}$ for some j, then let $f(x, y)=y$ (or x, or x); (iii) if $x \in R_{2 j+1}, y \in R_{2 j^{+}+1}$ for some j, j^{\prime} such that $j<j^{\prime}$, then decide whether $x \in A$, and if $x \in A$ then let $f(x, y)=x$ else let $f(x, y)=y$; (iv) if $y \in R_{2 j+1}, x \in R_{2 j^{\prime}+1}$, for some j, j^{\prime} such that $j<j^{\prime}$ then decide whether $y \in A$, and if $y \in A$ then let $f(x, y)=y$ else let $f(x, y)=x$. Note that, as $A \in \mathrm{E}$ and - in cases (iii) and (iv) $-|y| \geqslant 2^{2^{2 \times 1}}$ (or $|x| \geqslant 2^{2^{|\nu|}}$), in these cases we indeed can easily decide by brute force whether $x \in A$ (or $y \in A$). So it is not hard to see that f is computable in time polynomial in $\max \{|x|,|y|\}$.

For the same reason, $\mathscr{C}_{2} \cap \mathrm{E} \subseteq$ P-Sel.
Let $\left\{M_{i}\right\}_{i \in N}$ be a standard enumeration of deterministic polynomial-time Turing machines. Without loss of generality, we may assume this enumeration has the property that for each $j \in N$ the running time of $M_{j}\left(z_{1}, z_{2}\right)$ is less than $2^{\max \left\{\left|z_{1}\right|,\left|z_{2}\right|\right\}}$ for all $z_{1}, z_{2} \in R_{2 j+1}$.

For each $j \geqslant 0$, define $w_{j, a}=\mu(2 j+1), w_{j, b}=1+\mu(2 j+1)$, and

$$
\begin{aligned}
& B=\left\{i \mid(\exists j)\left[i \in R_{2 j+1} \wedge\left(i \geqslant w_{j, b} \vee\left(i \geqslant w_{j, a} \wedge M_{j}\left(w_{j, a}, w_{j, b}\right)=w_{j, b}\right)\right)\right]\right\} \\
& D=\left\{i \mid(\exists j)\left[i \in R_{2_{j+1}} \wedge\left(i \leqslant w_{j, a} \vee\left(i \leqslant w_{j, b} \wedge M_{j}\left(w_{j, a}, w_{j, b}\right) \neq w_{j, b}\right)\right)\right]\right\}
\end{aligned}
$$

Clearly $B \in \mathscr{C}_{1} \cap \mathrm{E}$ and $D \in \mathscr{C}_{2} \cap \mathrm{E}$, so B and D are P -selective. Now we prove that $B \cap D$ is not a P-selective set. By the way of contradiction, suppose that $B \cap D$ is P-selective, and suppose $M_{j_{0}}$ computes a P-selector function for $B \cap D$. By the definition of B and D, for each $j,\left\{w_{j, a}, w_{j, b}\right\} \cap(B \cap D) \neq \emptyset$. However, if $w_{j_{0}, a} \in B \cap D$, then by the definition of $B, M_{j_{0}}\left(w_{j_{0}, a}, w_{j_{0}, b}\right)$ must be $w_{j_{0}, b}$, but by the definition of D, this implies $w_{j_{0}, b} \notin D$. So $w_{j_{0}, b} \notin B \cap D$. Thus we have $w_{j_{0}, a} \in B \cap D, w_{j_{0}, b} \notin B \cap D$, and $M_{j_{0}}\left(w_{j_{0}, a}, w_{j_{0}, b}\right)=w_{j_{0}, b}$, which contradicts the assumption that $M_{j_{0}}$ is a P-selector function for $B \cap D$. On the other hand, if $w_{j_{0}, b} \in B \cap D$, then by the definition of D, $M_{j_{0}}\left(w_{j_{0}, a}, w_{j_{0}, b}\right)$ must be $w_{j_{0}, a}$, but by the definition of B, this implies $w_{j_{0}, a} \notin B$. And so
$w_{j_{0}, a} \notin B \cap D$, which similarly is a contradiction. Hence $B \cap D$ is not a P-selective set.

Corollary 2.2. The P -selective sets are not closed under the following eight 2-ary Boolean connectives: $L_{1} \cap L_{2}, \overline{L_{1}} \cap L_{2}, L_{1} \cap \overline{L_{2}}, \overline{L_{1}} \cap \overline{L_{2}}, L_{1} \cup L_{2}, \overline{L_{1}} \cup L_{2}$, $L_{1} \cup \overline{L_{2}}, \overline{L_{1}} \cup \overline{L_{2}}$.

Proof. Follows easily from the standard fact that a language L is P-selective if and only if its complement is P -selective.

Lemma 2.3. The P -selective sets are not closed under $N X O R$ or $X O R$ (i.e., $\left(L_{1} \cap L_{2}\right) \cup\left(\overline{L_{1}} \cap \overline{L_{2}}\right)$ or $\left.\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)\right)$.

Proof. Let B and D be the same as in Lemma 2.1. Note that $B N X O R D=(B \cap D) \pm\left(\cup_{k \geqslant 0} R_{2 k}\right)$, where \pm denotes that the two operands being unioned happen to be disjoint. By a proof analogous to that of Lemma 2.1 (except that all $R_{2 j}$ strings will be in all \mathscr{C}_{1} and \mathscr{C}_{2} sets), it is easy to see $B N X O R D$ is not P-selective either. The $X O R$ case follows immediately from this.

From the above proofs, we easily have the following claim.

Theorem 2.4. The P-selective sets are closed under exactly six 2-ary Boolean connectives, namely, the completely degenerate and almost-completely degenerate connectives.

This concludes our discussion of the closure properties of the P-selective sets under 2-ary Boolean connectives. Now we discuss the general case - the closure properties of the P-selective sets under k-ary Boolean connectives.

By the definition of k-ary Boolean connective, we know for k languages $L_{1}, L_{2}, \ldots, L_{k}, \quad I\left(L_{1}, \ldots, L_{k}\right)=\left\{x \mid\left(\exists \alpha_{1}, \ldots, \alpha_{k}\right) \quad\left[f_{I}\left(\alpha_{1}, \ldots, \alpha_{k}\right)=1 \wedge x \in L_{1}^{\alpha_{1}} \cap \cdots \cap\right.\right.$ $\left.\left.L_{k}^{\alpha_{k}}\right]\right\}$, where $\alpha_{1}, \ldots, \alpha_{k}$ are Boolean valued, $L^{\alpha}=L$ if $\alpha=1$, and $L^{\alpha}=\bar{L}$ if $\alpha=0$.

Theorem 2.5. If I is a k-ary Boolean connective, then the P -selective sets are closed under I if and only if I is either completely degenerate or almost-completely degenerate.

Proof. By the definition of being completely degenerate and being almost-completely degenerate, we just need to prove the following claim.

Claim. The P-selective sets are closed under a k-ary Boolean connective f if and only if one of the following conditions holds:
(1) $\left(\forall \alpha_{1} \cdots \alpha_{k}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k}\right)=1\right]$;
(2) $\left(\forall \alpha_{1} \cdots \alpha_{k}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k}\right)=0\right]$;
(3) $(\exists i)\left(\forall \alpha_{1} \cdots \alpha_{i-1}, \alpha_{i+1} \cdots \alpha_{k}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\alpha_{i}\right]$;
(4) ($\exists i$) $\left(\forall \alpha_{1} \cdots \alpha_{i-1}, \alpha_{i+1} \cdots \alpha_{k}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k}\right)=\bar{\alpha}_{i}\right]$.

For $k=1$, we know P -selective sets are closed under identity and complement, so the claim holds. For $k=2$, the above claim is proven as Theorem 2.4.

Suppose f is a $(k+1)$-ary Boolean connective. The "if" direction of the claim is trivial. Now we prove that the "only if" direction holds. Assume f does not satisfy any of the following conditions:
(5) $\left(\forall \alpha_{1} \cdots \alpha_{k+1}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)=1\right]$;
(6) $\left(\forall \alpha_{1} \cdots \alpha_{k+1}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)=0\right]$;
(7) $(\exists i)\left(\forall \alpha_{1} \cdots \alpha_{i-1}, \alpha_{i+1} \cdots \alpha_{k+1}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)=\alpha_{i}\right]$;
(8) $(\exists i)\left(\forall \alpha_{1} \cdots \alpha_{i-1}, \alpha_{i+1} \cdots \alpha_{k+1}\right)\left[f\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{i}\right]$.

Define $f_{i, \alpha_{i}}\left(\alpha_{1} \cdots \alpha_{i-1}, \alpha_{i+1} \cdots \alpha_{k+1}\right)=f\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)$, and note that for each i and α_{i}, it holds that $f_{i, \alpha_{i}}$ is a k-ary Boolean connective. We will prove the claim via the following two cases:

Case 1: $\left(\forall i, \alpha_{i}\right)\left[f_{i, \alpha_{i}}\right.$ satisfies one of (1)-(4)].
Subcase 1: For some $i, f_{i, 0}$ satisfies (1) or (2) and $f_{i, 1}$ satisfies (1) or (2).
It is easy to see that f becomes completely degenerate or almost-completely degenerate, and therefore satisfies one of (5)-(8). This contradicts our assumption.

Subcase 2: For some i, one of $f_{i, 0}$ and $f_{i, 1}$ satisfies (1) or (2), and the other one of $f_{i, 0}$ and $f_{i, 1}$ satisfies (3) or (4). In this case, f does not satisfy any of (5)-(8). We must prove that the P -selective sets are not closed under this f. Without loss of generality, we assume $i=1$. Throughout the rest of this proof, let B and D be the specific P -selective sets constructed in Lemma 2.1.

Consider $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=0$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\alpha_{j}$ for some j such that $2 \leqslant j \leqslant k+1$. Let $L_{1}=B, L_{j}=D$, and $L_{i}=\Sigma^{*}$ for each i such that $1<i \leqslant k+1$ and $i \neq j$. Then we know $I\left(L_{1}, \ldots, L_{k+1}\right)=B \cap D$, and $B \cap D$ is not a P-selective set. So the P-selective sets are not closed under this f.

Consider $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=1$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\alpha_{j}$ for some j such that $2 \leqslant j \leqslant k+1$. Let $L_{1}=\bar{B}, L_{j}=D$, and $L_{i}=\Sigma^{*}$ for each i such that $1<i \leqslant k+1$ and $i \neq j$. Then we have $I\left(L_{1}, \ldots, L_{k+1}\right)=B \cap D$ which is not a P-selective set.

Next, consider $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=0$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{j}$ for some j such that $2 \leqslant j \leqslant k+1$. Set $L_{1}=B, L_{j}=\bar{D}$, and $L_{i}=\Sigma^{*}$ for each i such that $1<i \leqslant k+1$ and $i \neq j$. Again we have $I\left(L_{1}, \ldots, L_{k+1}\right)=B \cap D$ which is not a P-selective set.

Finally consider $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=1$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{j}$ for some j such that $2 \leqslant j \leqslant k+1$. Let $L_{1}=\bar{B}, L_{j}=\bar{D}$, and $L_{i}=\Sigma^{*}$ for each i such that $1<i \leqslant k+1$ and $i \neq j$. Again we have $I\left(L_{1}, \ldots, L_{k+1}\right)=B \cap D$ which is not a Pselective set.

Subcase 3: For some i, $f_{i, 0}$ satisfies (3) or (4) and $f_{i, 1}$ satisfies (3) or (4). Without loss of generality, we assume $i=1$.

Consider $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\alpha_{j}$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\alpha_{j^{\prime}}$ for some j and j^{\prime} such that $2 \leqslant j$ and $2 \leqslant j^{\prime} \leqslant k+1$ (the case $j^{\prime}=1$ is included in Subcase 2). If $j=j^{\prime}$, then (7) holds. This contradicts the assumption. If $j \neq j^{\prime}$, then f indeed does not satisfy any of (5)-(8). Set $\quad L_{1}=B, \quad L_{j}=B, \quad L_{j^{\prime}}=D, \quad$ and $\quad L_{i}=\Sigma^{*} \quad$ for $i \neq 1, j, j^{\prime}$. Then
$I\left(L_{1}, \ldots, L_{k+1}\right)=\left(\bar{L}_{1} \cap L_{j}\right) \cup\left(L_{1} \cap L_{j^{\prime}}\right)=(\bar{B} \cap B) \cup(B \cap D)=B \cap D$. So in this case also the P-selective sets are not closed under f.

Consider $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\alpha_{j}$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{j^{\prime}}$ for some j and j^{\prime} such that $2 \leqslant j$ and $2 \leqslant j^{\prime} \leqslant k+1$. If $j=j^{\prime}$, then let $L_{i}=\Sigma^{*}$ for $i \neq 1, j$. Now we have $I\left(L_{1}, \ldots, L_{k+1}\right)=\left(\overline{L_{1}} \cap L_{j}\right) \cup\left(L_{1} \cap \overline{L_{j}}\right)$, which is the XOR operator. By Lemma 2.3, the P -selective sets are not closed under this operator. If $j \neq j^{\prime}$, then let $L_{1}=B, L_{j}=B$, $L_{j^{\prime}}=\bar{D}$, we have $I\left(L_{1}, \ldots, L_{k+1}\right)=B \cap D$ which is not a P-selective set.

By a similar argument, we can also prove that the P-selective sets are not closed under the operator f such that $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{j}$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\alpha_{j^{\prime}}$ for some j and j^{\prime} such that $2 \leqslant j$ and $2 \leqslant j^{\prime} \leqslant k+1$, and that the P -selective sets are not closed under the operator f such that $f\left(0, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{j}$ and $f\left(1, \alpha_{2}, \ldots, \alpha_{k+1}\right)=\bar{\alpha}_{j^{\prime}}$ for some j and j^{\prime} such that $2 \leqslant j$ and $2 \leqslant j^{\prime} \leqslant k+1$.

Case 2: There exists an i and α_{i} such that $f_{i, \alpha_{i}}$ does not satisfy any of (1)-(4). Without loss of generality, suppose $i=k+1$. Consider $\alpha_{i}=0$. Let $L_{k+1}=\emptyset$. Then $I_{f}\left(L_{1}, \ldots, L_{k+1}\right)=I_{f_{k+1, x_{1}}}\left(L_{1}, \ldots, L_{k}\right)$ (by the definition of I). By our inductive assumption, we know that under $f_{k+1, \alpha_{k+1}}$, the P-selective sets are not closed, and thus they are not closed under this f.

Now consider $\alpha_{i}=1$. Let $L_{k+1}=\Sigma^{*}$. Then $I_{f}\left(L_{1}, \ldots, L_{k+1}\right)=I_{f_{k+1, \ldots, 1}}\left(L_{1}, \ldots, L_{k}\right)$. Again, by our inductive assumption, we know that the P-selective sets are not closed under this f.

Note that there are exactly $2 k+2$ completely degenerate or almost-completely degenerate k-ary connectives (2 of the former and $2 k$ of the latter).

Corollary 2.6. For each $k \geqslant 0$, the P -selective sets are closed under exactly $2 k+2 k$-ary Boolean connectives.

It is not hard to see, from the approach of the proof of Theorem 2.5, not just that the P-selective sets are not closed under any k-ary Boolean connective that is neither completely degenerate nor almost-completely degenerate, but also that for any such connective I and any reasonable time (or space) class (e.g., DTIME [$\left.2^{2^{20}}\right]$), there are P -selective sets such that applying the operator to them yields a set not selective via any selector function from the time (or space) class.

Finally, let \oplus denote the join operation, which is also variously known as "marked union" and "disjoint union". In particular, for any sets A and B, let $A \oplus B=$ $\{0 x \mid x \in A\} \cup\{1 y \mid y \in B\}$. Note that almost all known complexity classes are closed under the join. Indeed, even such a badly behaved class as UP - which docs not robustly possess complete sets [5,9], positive relativizations [8], or upward separation [7] - is clearly closed under the join. However, as the P-selective sets are closed downwards under positive truth-table reductions [18] and $A \cap B$ positive truth-table reduces to $A \oplus B$, Lemma 2.1 implies the following result.

Theorem 2.7. The P-selective sets are not closed under the join.

2.2. Indices

We now show that the complexity of determining whether a set (specified by a Turing machine) is P -selective - that is, the index set of the (r.e.) P-selective sets - is Σ_{3}^{0}-complete. Let M_{1}, M_{2}, \ldots be a standard enumeration of deterministic, clocked, polynomial-time Turing machines. Let $\hat{M}_{1}, \hat{M}_{2}, \ldots$ be a standard enumeration of Turing machines. For each i, let $W_{i}=L\left(\hat{M}_{i}\right)$. For each i and t, let $W_{i, t}$ denote the set of all strings accepted by \hat{M}_{i} within t steps.

Definition 2.8. We define $w_{2 n}$ and $w_{2 n+1}$ (which will be the pair of elements witnessing the failure of some P-selector) by: $w_{0}=2$, and for each $n \geqslant 0, w_{2 n+1}=1+w_{2 n}$ and $w_{2(n+1)}=2^{2^{2^{2} 2_{n}}}$.

Definition 2.9. We define a language L as follows: For all i and m, if $M_{i}\left(w_{2\langle i, m\rangle}, w_{2\langle i, m\rangle+1}\right)=w_{2\langle i, m\rangle}$, then put $w_{2\langle i, m\rangle+1}$ into L and keep $w_{2\langle i, m\rangle}$ out of L. If $M_{i}\left(w_{2\langle i, m\rangle}, w_{2\langle i, m\rangle+1}\right)=w_{2\langle i, m\rangle+1}$, then put $w_{2\langle i, m\rangle}$ into L and keep $w_{2\langle i, m\rangle+1}$ out of L. Otherwise do nothing.

Lemma 2.10. The language L defined above is recursive but not P -selective.

Proof. Since each machine M_{i} is polynomial-time clocked, L is recursive.
Suppose that L is a P-selective set and suppose $M_{i_{0}}$ is a polynomial-time selector. Fix any m. Then if $M_{i_{0}}\left(w_{2\left\langle i_{0}, m\right\rangle}, w_{2\left\langle i_{0}, m\right\rangle+1}\right)=w_{2\left\langle i_{0}, m\right\rangle}$, by the definition of L, $w_{2\left\langle i_{0}, m\right\rangle+1}$ is in L but $w_{2\left\langle i_{0}, m\right\rangle}$ is not in L, so $M_{i_{0}}$ selects the one that is not in L. Thus $M_{i_{0}}$ certainly does not compute a P-selector function for L. If $M_{i_{0}}\left(w_{2\left\langle i_{0}, m\right\rangle}, w_{2\left\langle i_{0}, m\right\rangle+1}\right)$ $=w_{2\left\langle i_{0}, m\right\rangle+1}$, in the same way we again get a contradiction. Hence L is not a Pselective set.

Lemma 2.11. Let $L^{[i]}=\left\{w_{2\langle i, m\rangle}, w_{2\langle i, m\rangle+1} \mid m \in N\right\} \cap L$. Then $L^{[i]}$ is a polynomial-time computable set, i.e., $L^{[t]} \in P$.

Proof. It is clear that $L^{[i]}$ can be recognized by simulating the machine M_{i}, which is polynomial-time clocked, on the appropriate elements.

Theorem 2.12. $\left\{\hat{M}_{i} \mid L\left(\hat{M}_{i}\right) \in \mathrm{P}-\mathrm{Sel}\right\}$ is Σ_{3}^{0}-complete.

Proof. (i) (Counting the quantifiers) $i \in I_{\mathrm{P} \text {-Sel }} \Leftrightarrow W_{i}$ is P -selective $\Leftrightarrow(\exists f: f$ is poly-nomial-time computable function) $\left(\forall x, y \in \Sigma^{*}\right)\left[\left(\left(x \in W_{i} \vee y \in W_{i}\right) \Rightarrow f(x, y) \in W_{i}\right) \wedge\right.$ $(f(x, y)=x \vee f(x, y)=y)]$.

By the Tarski-Kuratowski algorithm (see [16]), it is easy to see that $I_{\text {P-Sel }} \in \Sigma_{3}^{0}$, since the predicate $\left(z \in W_{i}\right)$ is Σ_{1}^{0}.
(ii) (Construction of the reduction) Fix a set $A \in \Sigma_{3}^{0}$. We will describe a recursive reduction h such that $(\forall x)\left[x \in A \Leftrightarrow h(x) \in I_{\mathrm{P} \text {-Sel }}\right]$. In particular, we will construct sets B_{x}. We arrange the construction so that $\left[x \in A \Rightarrow B_{x}\right.$ is P-selective] and [$x \notin A$
$\Rightarrow B_{x}$ is not P -selective]. The instructions for B_{x} will depend effectively on x. Hence we shall have a recursive function h such that $B_{x}=W_{h(x)}$, and thus, $A \leqslant_{m} I_{\mathrm{P}-\mathrm{Sel}}$ via reduction h.

From basic recursion theory ([20], see also [6]), we know there is a recursive function $g(x, y)$ such that

$$
x \in A \Leftrightarrow(\exists y)\left[W_{g(x, y)} \text { is infinite }\right] .
$$

For every x, we describe below the effective construction of a set C_{x} by induction on stages. Note that C_{x} is a recursively enumerable set an index of which, by our construction, will be recursive in x. Define $C_{x}=U_{s \geqslant 0} C_{x, s}$.

Stage 0: Set $C_{x, 0}=\emptyset$.
Stage $s+1$: During the following construction, the set L is defined as in Definition 2.9. For each $y \leqslant s$, if

$$
\left(W_{g(x, y), s} \cap \Sigma \leqslant s\right) \neq\left(W_{g(x, y), s+1} \cap \Sigma \leqslant s+1\right),
$$

then we add to $C_{x, s+1}$ all $w_{2\langle i, m\rangle}$ and $w_{2\langle i, m\rangle+1}$ that (a) are in $L^{[i]}$ and (b) satisfy $y \leqslant i \leqslant s$ and $m \leqslant s$. This ends the construction of C_{x}.

Finally, we define $B_{x}=\bar{L} \cup C_{x}$. The construction just given yields, keeping in mind that L is recursive and g is recursive, that C_{x} is a recursively enumerable set an index of which is recursive in x, that is, there is a recursive function k so that $(\forall x)\left[W_{k(x)}=C_{x}\right]$. So, as \bar{L} is recursive, there indeed is a recursive reduction h such that ($\forall x$) $\left[W_{h(x)}=B_{x}\right]$.
(iii) (Verification) If $x \in A$, then there is a y_{0} (for specificity, consider the least one) such that $W_{g\left(x, y_{0}\right)}$ is infinite. Then by our construction, $\left(W_{g\left(x, y_{0}\right), s} \cap \Sigma \leqslant s\right) \neq$ ($W_{g\left(x, y_{0}\right), s+1} \cap \Sigma^{\leqslant s+1}$) will hold at infinitely many stages, and so the elements in each $L^{[i]}$ with $i \geqslant y_{0}$ will eventually be enumerated into C_{x}, and will eventually be removed from $\overline{C_{x}}$. Since $\overline{B_{x}}=L \cap \overline{C_{x}}$, it follows that $\overline{B_{x}}$ is the finite union of $L^{[i]}$ where $i<y_{0}$. By Lemma 2.11, this implies that $\overline{B_{x}}$ is the finite union of P sets, and thus is in P, and so B_{x} is also in P , and thus is P -selective.

If $x \notin A$, then $W_{g(x, y)}$ is finite for each y. By our construction, only finitely many elements in each $L^{[i]}$ will be enumerated into C_{x}, and thus be removed from $\overline{C_{x}}$, that is, regarding the set $L \cap \overline{C_{x}}$, for each i it holds that in $L^{[i]} \cap \overline{C_{x}}$ there are still infinitely many elements available to witness the failure of M_{i} to be a P-selector function for $L \cap \overline{C_{x}}$ (i.e., $\overline{B_{x}}$), and thus for no i is M_{i} a P-selector for B_{x} (essentially by the same argument as in the proof of Lemma 2.10, except choosing in that proof the m now to be some m not in the finite number chopped out of $\overline{C_{x}}$ by the construction). So $\overline{B_{x}}$ is not a P-selective set, and thus neither is B_{x}.

Now we have achieved the equivalence,

$$
x \in A \Leftrightarrow W_{h(x)} \text { is P-selective } \Leftrightarrow h(x) \in I_{\mathrm{P} \text {-Sel }}
$$

which completes our proof.

Acknowledgements

We thank Yenjo Han for careful proofreading and helpful comments.

References

[1] R. Beigel, M. Kummer and F. Stephan, Approximable sets, in: Proc. 9th Structure in Complexity Theory Conf. (IEEE Computer Soc. Press, Silver Spring, 1994) 12-23.
[2] H. Buhrman, L. Torenvliet and P. van Emde Boas, Twenty questions to a P-selector, Inform. Process. Lett. 48(4) (1993) 201-204.
[3] N. Buhrman, P. van Helden and L. Torenvliet, P-selective self-reducible sets: A new characterization of P, in: Proc. 8th Structure in Complexity Theory Conf. (IEEE Computer Soc. Press, Silver Spring, 1993) 44-51.
[4] D. Denny-Brown, Y. Han, L. Hemaspaandra and L. Torenvliet, Semi-membership algorithms: Some recent advances, SIGACT News 25(3) (1994) 12-23.
[5] J. Hartmanis and L. Hemachandra, Complexity classes without machines: On complete languages for UP, Theoret. Comput. Sci. 58 (1988) 129-142.
[6] J. Hartmanis and F. Lewis, The use of lists in the study of undecidable problems in automata theory, J. Comput. System Sci. 5(1) (1971) 54-66.
[7] L. Hemaspaandra and S. Jha, Defying upward and downward separation, Inform. and Comput., to appear.
[8] L. Hemachandra and R. Rubinstein, Separating complexity classes with tally oracles, Theoret. Comput. Sci. 92(2) (1992) 309-318.
[9] L. Hemaspaandra, S. Jain and N. Vereshchagin, Banishing robust Turing completeness, Internat. J. Found. Comput. Sci. 4(3) (1993) 245-265.
[10] L. Hemaspaandra, A. Naik, M. Ogihara and A. Selman, Computing solutions uniquely collapses the polynomial hierarchy, SIAM J. Comput., to appear.
[11] C. Jockusch, Semirecursive sets and positive reducibility, Trans. Amer. Math. Soc. 131(2) (1968) 420-436.
[12] K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci. 26 (1983) 209-221.
[13] K. Ko and U. Schöning, On circuit-size complexity and the low hierarchy in NP, SIAM J. Comput. 14(1) (1985) 41-51.
[14] S. Kurtz, A relativized failure of the Berman-Hartmanis conjecture, Tech. Report TR83-001, University of Chicago Department of Computer Science, Chicago, IL, 1983.
[15] M. Ogihara, Polynomial-time membership comparable sets, in: Proc. 9th Structure in Complexity Theory Conf. (IEEE Computer Soc. Press, Silver Spring, 1994) 2-11.
[16] H. Rogers, Jr, The Theory of Recursive Functions and Effective Computability. (McGraw-Hill, New York, 1967).
[17] A. Selman, P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP, Math. Systems Theory 13 (1979) 55-65.
[18] A. Selman, Analogues of semirecursive sets and effective reducibilities to the study of NP complexity, Inform. and Control 52 (1982) 36-51.
[19] A. Selman, Reductions on NP and P-selective sets, Theoret. Computer. Sci. 19 (1982) 287-304.
[20] R. Soare, Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic (Springer, Berlin, 1987).

[^0]: * Corresponding author. E-mail: lane@cs.rochester.edu.
 ${ }^{1}$ Supported in part by grants NSF-CCR-8957604, NSF-INT-9116781/JSPS-ENG-207, and NSF-CCR9322513.
 ${ }^{2}$ Work done while visiting the University of Rochester, supported in part by a postdoctoral fellowship from the Chinese Academy of Sciences and grant NSF-CCR-8957604. Current address: Department of Computer Science and Systems, McMaster University, Hamilton, Ont., Canada L8S 4K 1.

