1,387 research outputs found

    Intrinsically Universal Cellular Automata

    Full text link
    This talk advocates intrinsic universality as a notion to identify simple cellular automata with complex computational behavior. After an historical introduction and proper definitions of intrinsic universality, which is discussed with respect to Turing and circuit universality, we discuss construction methods for small intrinsically universal cellular automata before discussing techniques for proving non universality

    Communication Complexity and Intrinsic Universality in Cellular Automata

    Get PDF
    The notions of universality and completeness are central in the theories of computation and computational complexity. However, proving lower bounds and necessary conditions remains hard in most of the cases. In this article, we introduce necessary conditions for a cellular automaton to be "universal", according to a precise notion of simulation, related both to the dynamics of cellular automata and to their computational power. This notion of simulation relies on simple operations of space-time rescaling and it is intrinsic to the model of cellular automata. Intrinsinc universality, the derived notion, is stronger than Turing universality, but more uniform, and easier to define and study. Our approach builds upon the notion of communication complexity, which was primarily designed to study parallel programs, and thus is, as we show in this article, particulary well suited to the study of cellular automata: it allowed to show, by studying natural problems on the dynamics of cellular automata, that several classes of cellular automata, as well as many natural (elementary) examples, could not be intrinsically universal

    Impartial games emulating one-dimensional cellular automata and undecidability

    Full text link
    We study two-player \emph{take-away} games whose outcomes emulate two-state one-dimensional cellular automata, such as Wolfram's rules 60 and 110. Given an initial string consisting of a central data pattern and periodic left and right patterns, the rule 110 cellular automaton was recently proved Turing-complete by Matthew Cook. Hence, many questions regarding its behavior are algorithmically undecidable. We show that similar questions are undecidable for our \emph{rule 110} game.Comment: 22 pages, 11 figure

    Computational Processes and Incompleteness

    Full text link
    We introduce a formal definition of Wolfram's notion of computational process based on cellular automata, a physics-like model of computation. There is a natural classification of these processes into decidable, intermediate and complete. It is shown that in the context of standard finite injury priority arguments one cannot establish the existence of an intermediate computational process

    Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density

    Full text link
    We investigate the sensitivity of the composite cellular automaton of H. Fuk\'{s} [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.Comment: Typeset in REVTeX 4.1, 5 pages, 5 figures, 2 tables, 1 appendix. Version v2 corresponds to the published version of the manuscrip

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table
    corecore