research

Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density

Abstract

We investigate the sensitivity of the composite cellular automaton of H. Fuk\'{s} [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.Comment: Typeset in REVTeX 4.1, 5 pages, 5 figures, 2 tables, 1 appendix. Version v2 corresponds to the published version of the manuscrip

    Similar works