330 research outputs found

    NP-Completeness, Proof Systems, and Disjoint NP-Pairs

    Get PDF

    On the existence of complete disjoint NP-pairs

    Get PDF
    Disjoint NP-pairs are an interesting model of computation with important applications in cryptography and proof complexity. The question whether there exists a complete disjoint NP-pair was posed by Razborov in 1994 and is one of the most important problems in the field. In this paper we prove that there exists a many-one hard disjoint NP-pair which is computed with access to a very weak oracle (a tally NP-oracle). In addition, we exhibit candidates for complete NP-pairs and apply our results to a recent line of research on the construction of hard tautologies from pseudorandom generators

    Nondeterministic functions and the existence of optimal proof systems

    Get PDF
    We provide new characterizations of two previously studied questions on nondeterministic function classes: Q1: Do nondeterministic functions admit efficient deterministic refinements? Q2: Do nondeterministic function classes contain complete functions? We show that Q1 for the class is equivalent to the question whether the standard proof system for SAT is p-optimal, and to the assumption that every optimal proof system is p-optimal. Assuming only the existence of a p-optimal proof system for SAT, we show that every set with an optimal proof system has a p-optimal proof system. Under the latter assumption, we also obtain a positive answer to Q2 for the class . An alternative view on nondeterministic functions is provided by disjoint sets and tuples. We pursue this approach for disjoint -pairs and its generalizations to tuples of sets from and with disjointness conditions of varying strength. In this way, we obtain new characterizations of Q2 for the class . Question Q1 for is equivalent to the question of whether every disjoint -pair is easy to separate. In addition, we characterize this problem by the question of whether every propositional proof system has the effective interpolation property. Again, these interpolation properties are intimately connected to disjoint -pairs, and we show how different interpolation properties can be modeled by -pairs associated with the underlying proof system

    Does Advice Help to Prove Propositional Tautologies?

    Get PDF
    One of the starting points of propositional proof complexity is the seminal paper by Cook and Reckhow [6], where they defined propositional proof systems as poly-time computable functions which have all propositional tautologies as their range. Motivated by provability consequences in bounded arithmetic, Cook and Krajíček [5] have recently started the investigation of proof systems which are computed by poly-time functions using advice. While this yields a more powerful model, it is also less directly applicable in practice. In this note we investigate the question whether the usage of advice in propositional proof systems can be simplified or even eliminated. While in principle, the advice can be very complex, we show that proof systems with logarithmic advice are also computable in poly-time with access to a sparse NP-oracle. In addition, we show that if advice is ”not very helpful” for proving tautologies, then there exists an optimal propositional proof system without advice. In our main result, we prove that advice can be transferred from the proof to the formula, leading to an easier computational model. We obtain this result by employing a recent technique by Buhrman and Hitchcock [4]

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper
    corecore