153 research outputs found

    Owicki-Gries Reasoning for C11 RAR

    Get PDF
    Owicki-Gries reasoning for concurrent programs uses Hoare logic together with an interference freedom rule for concurrency. In this paper, we develop a new proof calculus for the C11 RAR memory model (a fragment of C11 with both relaxed and release-acquire accesses) that allows all Owicki-Gries proof rules for compound statements, including non-interference, to remain unchanged. Our proof method features novel assertions specifying thread-specific views on the state of programs. This is combined with a set of Hoare logic rules that describe how these assertions are affected by atomic program steps. We demonstrate the utility of our proof calculus by verifying a number of standard C11 litmus tests and Peterson’s algorithm adapted for C11. Our proof calculus and its application to program verification have been fully mechanised in the theorem prove

    View-based Owicki-Gries reasoning for persistent x86-TSO

    Get PDF
    The rise of persistent memory is disrupting computing to its core. Our work aims to help programmers navigate this brave new world by providing a program logic for reasoning about x86 code that uses low-level operations such as memory accesses and fences, as well as persistency primitives such as flushes. Our logic, Pierogi, benefits from a simple underlying operational semantics based on views, is able to handle optimised flush operations, and is mechanised in the Isabelle/HOL proof assistant. We detail the proof rules of Pierogi and prove them sound. We also show how Pierogi can be used to reason about a range of challenging single- and multi-threaded persistent program

    Lifting the Reasoning Level in Generic Weak Memory Verification (Extended Version)

    Full text link
    Weak memory models specify the semantics of concurrent programs on multi-core architectures. Reasoning techniques for weak memory models are often specialized to one fixed model and verification results are hence not transferable to other memory models. A recent proposal of a generic verification technique based on axioms on program behaviour expressed via weakest preconditions aims at overcoming this specialization to dedicated models. Due to the usage of weakest preconditions, reasoning however takes place on a very low level requiring the application of numerous axioms for deriving program properties, even for a single statement. In this paper, we lift reasoning in this generic verification approach to a more abstract level. Based on a view-based assertion language, we provide a number of novel proof rules for directly reasoning on the level of program constructs. We prove soundness of our proof rules and exemplify them on the write-to-read causality (WRC) litmus test. A comparison to the axiom-based low-level proof reveals a significant reduction in the number of required proof steps

    Ogre and Pythia: An Invariance Proof Method for Weak Consistency Models

    Get PDF
    We design an invariance proof method for concurrent programs parameterised by a weak consistency model. The calculational design of the invariance proof method is by abstract interpretation of a truly parallel analytic semantics. This generalises the methods by Lamport and Owicki-Gries for sequential consistency. We use cat as an example of language to write consistency specifications of both concurrent programs and machine architectures

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin
    • …
    corecore