11 research outputs found

    Overview of IEEE802.15.4g OFDM and its Applicability to Smart Building Applications

    Get PDF
    International audienceThis paper compares the performance of two IEEE802.15.4 physical layers in the Smart Building context: 2.4 GHz O-QPSK and sub-GHz OFDM. The former has been in the IEEE802.15.4 standard since 2003, the latter was rolled into its 2015 revision. OFDM promises exceptional performance, in particular in environments with high external interference and multi-path fading. This paper starts with a comprehensive overview of IEEE802.15.4 and IEEE802.15.4g, with a particular focus on OFDM, its design drivers and modes of operation. The second half of this paper presents results from an exhaustive benchmarking campaign of both technologies in a building environment, and discusses lessons learnt. We show how OFDM has a higher range, even at 400 kbps and 800 kbps data rates. We then quantify the importance of frequency repetition in OFDM, and of using a wide communication channel, and we show how the use of OFDM can result in a 2–4 χ decrease in power consumption compared to 2.4 GHz O-QPSK. We conclude by recommending the use of OFDM option 1, with MCS2 for short (<128 B) frames, and MCS3 otherwise

    No Free Lunch - Characterizing the Performance of 6TiSCH When Using Different Physical Layers

    Get PDF
    International audienceLow-power wireless applications require different trade off points between latency, reliability ,data rate and power consumption. Given such a set of constraints, which physical layer should I beusing? We study this question in the context of 6TiSCH,a state-of-the-art recently standardized protocol stack developed for harsh industrial applications. Specifically,we augment OpenWSN, the reference 6TiSCHopen-source implementation,to support one of three physical layers from the IEEE802.15.4g standard FSK 868 MHz which offers long range, OFDM 868 MHz which offers high data rate,and O-QPSK 2.4GHz which offers more balanced performance. We run the resulting firmware on the42-mote Open Testbed deployed in an office environment, once for each physical layer. Performance results show that, indeed, no physical layer outperforms the other for all metrics. This article argues for combining the physical layers, rather than choosing one,in a generalized 6TiSCH architecture in which technology-agile radio chips (of which there are now many) are driven by a protocol stack which c hooses the most appropriate physical layer on a frame-by-frame basis

    g6TiSCH: Generalized 6TiSCH for Agile Multi-PHY Wireless Networking

    Get PDF
    International audienceWireless networks traditionally use a single physical layer for communication: some use high bit-rate short-range radios, others low bit-rate long-range radios. This article introduces g6TiSCH, a generalization of the standards-based IETF 6TiSCH protocol stack. g6TiSCH allows nodes equipped with multiple radios to dynamically switch between them on a link-by-link basis, as a function of link-quality. This approach results in a dynamic trade-off between latency and power consumption. We evaluate the performance of the approach experimentally on an indoor office testbed of 36 OpenMote B boards. Each OpenMote B can communicate using FSK 868 MHz, O-QPSK 2.4 GHz or OFDM 868 MHz, a combination of long-range and short-range physical layers. We measure network formation time, end-to-end reliability, end-to-end latency, and battery lifetime. We compare the performance of g6TiSCH against that of a traditional 6TiSCH stack running on each of the three physical layers. Results show that g6TiSCH yields lower latency and network formation time than any of the individual PHYs, while maintaining a similar battery lifetime

    Initial Design of a Generalization of the 6TiSCH Standard to Support Multiple PHY Layers

    Get PDF
    This report introduces early results from an experiment to integrate multiple radios in the same 6TiSCH network. It is provides an initial step towards the publication of an article tentatively titled “Generalized 6TiSCH for an Agile Multi-PHY Wireless Networking”. The work discussed the architecture of the proposed solution, and presents its performance compared to single-PHY networks.Ce rapport contient des rĂ©sultats prĂ©liminaires d’une Ă©tude pour utiliser plusieurs couches physiques dans un mĂȘme rĂ©seau 6TiSCH. Il s’agit d’une premiĂšre Ă©tape dans le but de publier nos travaux complets, sous le titre (en anglais) “Generalized 6TiSCH for an Agile Multi-PHY Wireless Networking”. Ce rapport dĂ©taille l’architecture Ă©valuĂ©e, et prĂ©sente les performance de l’approche, en comparaison avec un rĂ©seau qui n’utilise qu’une seule couche physique

    Reliable IEEE 802.15.4g based smart utility networks via adaptive modulation selection and re-transmission shaping

    Get PDF
    In this thesis work, we propose and evaluate a strategy to improve transmission in IEEE 802.15.4g SUN networks. This kind of network is at the basis of many promising IoT applications that require high reliability while maintaining low power consumption. The proposed strategy consists of two distinct parts: re-transmission shaping and modulation selection. The re-transmission shaping mechanism keeps track of unused packet re-transmissions and allocates additional re-transmissions when the instantaneous link quality decreases due to channel impairments. The modulation selection strategies apply Multi-Armed Bandits algorithms to dynamically choose the best transmission modulation. The combined effect of these two mechanisms aims to maximize link reliability while minimizing energy consumption and meeting radio-frequency regulation constraints. To evaluate the proposed methods we use trace-based simulations using an IEEE 802.15.4g SUN data-set and two widely used metrics, the PDR (Packet Delivery Ratio) and the RNP (Required Number of Packets). The obtained results show that re-transmission shaping and modulation selection are useful mechanisms to improve link reliability of low-power wireless communications. Their combined use can increase PDR from 77.9% to 98.7% while sustaining an RNP of 1.7 re-transmissions per packet when compared to using a single re-transmission per packet

    Bringing life out of diversity: Boosting network lifetime using multi‐PHY routing in RPL

    Get PDF
    International audienceIn this article, we propose a routing mechanism based on the RPL protocol in a wireless network that is equipped with a mix of short-range and long-range radios. We introduce Life-OF, an objective function for RPL which uses a combination of metrics and the diverse physical layers to boost the network's lifetime. We evaluate the performance of Life-OF compared to the classical MRHOF objective function in simulations. Two key performance indicators (KPIs) are reported: network lifetime and network latency. Results demonstrate that MRHOF tends to converge to a pure long-range network, leading to short network lifetime. However, Life-OF improves network lifetime by continuously adapting the routing topology to favor routing over nodes with longest remaining lifetime. Life-OF combines diverse radios and balances power consumption in the network. This way, nodes switch between using their short-range radio to improve their own battery lifetime and using their long-range radio to avoid routers that are close to depletion. Results show that using Life-OF improves the lifetime of the network by up to 470% that of MRHOF, while maintaining similar latency

    Intra-network interference robustness : an empirical evaluation of IEEE 802.15.4-2015 SUN-OFDM

    Get PDF
    While IEEE 802.15.4 and its Time Slotted Channel Hopping (TSCH) medium access mode were developed as a wireless substitute for reliable process monitoring in industrial environments, most deployments use a single/static physical layer (PHY) configuration. Instead of limiting all links to the throughput and reliability of a single Modulation and Coding Scheme (MCS), you can dynamically re-configure the PHY of link endpoints according to the context. However, such modulation diversity causes links to coincide in time/frequency space, resulting in poor reliability if left unchecked. Nonetheless, to some level, intentional spatial overlap improves resource efficiency while partially preserving the benefits of modulation diversity. Hence, we measured the mutual interference robustness of certain Smart Utility Network (SUN) Orthogonal Frequency Division Multiplexing (OFDM) configurations, as a first step towards combining spatial re-use and modulation diversity. This paper discusses the packet reception performance of those PHY configurations in terms of Signal to Interference Ratio (SIR) and time-overlap percentage between interference and targeted parts of useful transmissions. In summary, we found SUN-OFDM O3 MCS1 and O4 MCS2 performed best. Consequently, one should consider them when developing TSCH scheduling mechanisms in the search for resource efficient ubiquitous connectivity through modulation diversity and spatial re-use

    Integration of an IEEE802.15.4g compliant transceiver into the Linux-based AMBER platform

    Get PDF
    Nowadays the world is continuously discovering new strategies and methods to effectively organize the enormous quantity of information that has become accessible to us. Internet of Things is considered to be the next important breakthrough technology. In this work we illustrate a whole stack of protocols and software architecture tipically involved in modern IoT systems and report the experience of integrating a transceiver from Texas Instruments into the Amber embedded platform running Linu

    Latency Optimization in Smart Meter Networks

    Get PDF
    In this thesis, we consider the problem of smart meter networks with data collection to a central point within acceptable delay and least consumed energy. In smart metering applications, transferring and collecting data within delay constraints is crucial. IoT devices are usually resource-constrained and need reliable and energy-efficient routing protocol. Furthermore, meters deployed in lossy networks often lead to packet loss and congestion. In smart grid communication, low latency and low energy consumption are usually the main system targets. Considering these constraints, we propose an enhancement in RPL to ensure link reliability and low latency. The proposed new additive composite metric is Delay-Aware RPL (DA-RPL). Moreover, we propose a repeaters’ placement algorithm to meet the latency requirements. The performance of a realistic RF network is simulated and evaluated. On top of the routing solution, new asynchronous ordered transmission algorithms of UDP data packets are proposed to further enhance the overall network latency performance and mitigate the whole system congestion and interference. Experimental results show that the performance of DA-RPL is promising in terms of end-to-end delay and energy consumption. Furthermore, the ordered asynchronous transmission of data packets resulted in significant latency reduction using just a single routing metric
    corecore