
Università degli studi di Padova
Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Integration of an IEEE802.15.4g compliant transceiver into
the Linux-based AMBER platform

Laureando
Matteo Sartori

Relatore
Michele Moro

Correlatore
Matteo Petracca

Scuola Superiore Sant’Anna, Pisa

Anno accademico 2015-2016

abstract

Nowadays the world is continuously discovering new strategies and methods to
effectively organize the enormous quantity of information that has become accessible to
us. Such scenario is very well depicted by a thematic we can see spreading in a lot of

different scopes which could entail a deep transformation of our society in the
forthcoming future. Internet of Things is considered by many professionals and

academics to be the next important breakthrough technology. Radio technologies,
protocols development, low-complexity and low-power devices, embedded operating
systems, software engineering and security considerations are the main important

problems that companies and research laboratories are facing in order for the IoT to
become a reality. Texas Instruments, which owns the broadest wireless connectivity
portfolio, has developed an entire line of transceiver chips implementing low level

protocols, like the popular IEEE802.15.4g, thus giving the fundamental communication
system upon which to construct modern IoT networks.

As the development process is concerned, it is very important to understand that the
right combination of hardware and software tools is necessary in order to solve cutting
edge problems in an efficient way. The Amber open-hardware platform is designed to

be the perfect tool to deal with IoT embedded applications and lends itself to the
development of sensors, protocols, security mechanisms, gateways and filtering

questions. Also, the recent progress in facilitating the use of the Linux kernel in the
embedded world, and the wide adoption of this operating system as the deployment

platform for third-party software business, suggests a possible favorable future for open
source and community developed operating systems. In this work we illustrate a whole
stack of protocols and software architecture tipically involved in modern IoT systems

and report the experience of integrating a capable transceiver device from Texas
Instruments into the Amber embedded platform running the Linux operating system.

c©2016 Matteo Sartori - mttsrt [at] gmail [dot] com.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 License.

To view a copy of this license visit:
https://creativecommons.org/licenses/by-sa/4.0/legalcode.

4

Contents

1 Introduction 1

1.1 Information age . 1

1.2 Internet of Things . 2

1.3 Developing IoT Systems . 3

2 IoT Background 5

2.1 Origins . 5

2.2 Applications . 7

2.3 Projections . 8

2.4 Definitions . 8

2.5 Design Guidelines . 10

2.5.1 Device Characteristics . 10

2.5.2 Communication Models . 11

2.5.3 Reuse Internet Protocols . 13

2.5.4 Design for a Change . 15

2.6 Issues . 15

2.6.1 Security . 15

2.6.2 Privacy Considerations . 18

2.6.3 Interoperability and Standards . 18

3 Protocols Description 21

3.1 OSI Communication Model . 22

3.2 IEEE 802.15.4 . 24

3.2.1 Scope . 24

3.2.2 General Description . 25

3.2.3 Superframe Structure . 26

3.2.4 Data Transfer Model . 27

3.2.5 Security Mechanisms . 28

3.2.6 The G Amendment . 28

3.3 6LoWPAN . 29

3.3.1 Benefits . 30

3.3.2 Adaptation Layer . 30

i

ii CONTENTS

4 Linux Architecture 33
4.1 Overview and General Concepts . 34

4.1.1 Origins . 34
4.1.2 Abstractions . 35
4.1.3 Community . 38

4.2 Driver Model . 38
4.3 Network Subsystem . 39

4.3.1 Netlink . 40
4.3.2 Netdevice . 41

4.4 Linux Kernel for Embedded Platforms . 41
4.4.1 Bootloader . 42
4.4.2 Device Tree . 42
4.4.3 Architecture Specifics . 44

5 Hardware Description 45
5.1 The AMBER Platform . 46
5.2 Texas Instruments CC1200 . 46

5.2.1 Summary of Characteristics . 47
5.2.2 Radio Communication Terminology 48
5.2.3 Digital Features . 49

6 Software Development 51
6.1 Development Setup . 52

6.1.1 Cross Compiling . 53
6.1.2 Serial Line Console . 54
6.1.3 System Setup . 55

6.2 Driver Development . 57
6.2.1 Kernel Subsystems . 59
6.2.2 Driver Operations . 60

6.3 Tests and Experiments . 62

7 Conclusions 63

References 65

List of Figures

2.1 Direct communication model . 11
2.2 Device communicating with cloud services 12
2.3 Communications passes through the gateway 13
2.4 The first Internet service provider might be configured to talk to other

services . 14

3.1 OSI communication model . 23
3.2 Different network topologies . 26
3.3 Superframe structure imposed by the coordinator 27

4.1 Linux memory mapping and organization 36

6.1 Compiler phases for a C program . 53
6.2 Development setup . 56

iii

iv LIST OF FIGURES

Chapter 1

Introduction

1.1 Information age

The Information Age is by all means an incredible change impacting on all levels of
human society. As for other industrial revolutions in the past, the particular technology
which was developed, for example in textile manufacturing, metallurgy, steam power,
chemicals, firstly determined improvements in the production methods but in the longer
run, entailed a deep transformation concerning economics, politics, society, culture, ed-
ucation etc. The one that contributed to foundations of information age is called Digital
Revolution.

In this days the world is shifting towards a knowledge based society in which the
capability of extrapolating knowledge from flat information has become the main objec-
tive of whole economies, and this trend is having large implications also in other fields
like, most notably social interactions. Also the fact that a child can access an incredible
amount of information only with just a click is an indication of how much different will
be forthcoming generations.

For the information age is more difficult to determine exactly what was the principal
technology that initiated this evolutionary process, as a lot of different fields had had an
incredible development in the 20th century, even though the conception and first studies
were just started few years before. We can illustrate and summarize the technological
progress of this period, if at all possible, by considering the fact that the main objective
of academics and high tech laboratories was to build and efficiently operate new kind
of machines. They all wanted systems being able to execute a huge number of small
operations, each completely independent and with a well defined behaviour, which could
eventually represent some complex automation in the whole, carefully programmed to
be very precise and mathematically correct and certainly, as fast as possible. This
intent actually originated two different disciplines: digital electronics and computing.
An incredible powerful pair where the one cannot exist without the other. Nowadays a
widely known expression refers to them as hardware-software symbiosis. Whether the
study of electrical digital circuits or the more abstract algorithmic approach, the two
disciplines combined have shown the ability to produce amazing complexity systems like

1

2 CHAPTER 1. INTRODUCTION

modern web services, operative systems or networking infrastructures.

Another important component in the evolving information technology and a pivotal
player for being a key catalyst was Internet. A large globally extended and publicly
accessible system which lets machines communicate in a consistent and efficient manner,
without requiring a specific underlying machine architecture or operating system due
to the employment of well defined suite of protocols. An important historical reason
for considering Internet a change in computer networks was the ability to interconnect
different local or independent networks without requiring particular assumptions on the
inner workings. This simple idea, implemented through the use of the famous TCP/IP
suite, was the key in driving the incredibly wide adoption of this technology worldwide.
Further, being able to make machines interact with each others, in such a vast scale, was
an opening for new concepts. The value a computing machine can have is far amplified
by the fact of being simultaneously used for specific tasks and for leveraging on others’
capabilities. This introduced the powerful concept of distributed computing or the more
recent and business oriented cloud computing.

Without the capability of easily browse information content, Internet by itself would
have meant nothing special. The important tool that served in increasing the use of net-
working technology was the World Wide Web where the content is efficiently interlinked
and the user can “surf” an incredible amount of information with only a click. This gave
birth to the concept of web services. The user with his/her computer can reach very
quickly a lot of different everyday life supporting utilities, for example home-banking,
global e-commerce marketplaces (eBay), searching services (Google), video streaming
(Netflix), social networking (Facebook) and a lot of ad-hoc web content like Q&A web-
sites, wiki’s and forums. New economies, new ways of social interaction, different collab-
orative communities (Wikipedia, open source) have been emerging since the inception
of this new medium. The society proved to be willing to this transformation and new
trends show we have just now entered the Information Age, that we should expect to
see a lot of innovation happening in the forthcoming future and the world we see today
will probably have changed considerably.

1.2 Internet of Things

The concept of computer networking, even though started from locally deployed net-
works, through the use of the revolutionary idea of packet switching communication,
quickly reached its full potential. The principal inclination of automated networks has
always been to reach a range as wide as possible, where each machine can access the
functionality of another system working wherever on earth. This concept, known as
network effect in economy and business, has dictated the evolution of Internet. An-
other important implication of the fact that society has entered the information age,
is the increasing intention of finding business opportunities more and more related on
the exchange of information. This is supported by observing that a lot of economics
activities has discovered how much value can be obtained from information technologies,
for example mobile smart phones are attracting partners over and over again.

1.3. DEVELOPING IOT SYSTEMS 3

A famous trend that is nowadays exploding is the Internet of Things. This technol-
ogy benefits from advancements in computing power, electronics miniaturization, and
network interconnections to offer new capabilities not previously possible, and has the
simple target of connecting every kind of automation systems, sensor or actuator to the
Internet, although not in a short time at all. The large scale implementation of IoT
devices promises to further transform many aspects of the way we live. For consumers,
new IoT products like Internet-enabled appliances, home automation components, and
energy management devices are moving us toward a vision of the smart home, offering
more security and energy-efficiency. Other personal IoT devices like wearable fitness
and health monitoring devices and network-enabled medical devices are transforming
the way healthcare services are delivered. This technology promises to be beneficial for
people with disabilities and the elderly, enabling improved levels of independence and
quality of life at a reasonable cost. IoT systems like networked vehicles, intelligent traffic
systems, and sensors embedded in roads and bridges move us closer to the idea of smart
cities, which help minimize congestion and energy consumption. IoT technology offers
the possibility to transform agriculture, industry, and energy production and distribu-
tion by increasing the availability of information along the value chain of production
using networked sensors. However, such radical change doesn’t come for free. Deploying
smart object networks can be very challenging due to the engaging of a lot of different
technology fields.

1.3 Developing IoT Systems

In this work we present a set of thematics related to IoT, particularly on the development
process that is necessary in order to create a network of smart objects. Recent progresses
in radio technologies, networking protocols, embedded platforms and operating systems
are covered as an high level presentation of new topics that are recently arising in the
industry, and a more detailed discussion is provided only on software development in the
Linux ecosystem.

As illustrated in Chapter 2, there is no a single valuable framework which can be
used for developing IoT systems. There are a lot of problematics, from different fields,
that must be well understood, like security, privacy, interoperability and standards. It
also obscure to clearly determine properties of objects we want to connect in a smart
manner, so the first step is to carefully decide which kind of network our system belong
to, otherwise it could be difficult to correctly choose the communication protocols, the
development hardware and the operating system to employ. This is why in the Chapter
2 a wide scenario on recent IoT activities and considerations is proposed. Once it is clear
which kind of particular networked system we are facing, from the economic and social
point of view, we can consider to dive into more technical reasoning. As the Internet
of Things is itself born from recent progresses in radio technology is probable that our
system will make use of such modern techniques. Important considerations regard the
frequency bandwidth that is more appropriate, the modulation scheme for being able to
reach a certain throughput and the suite of network protocols that better matches the

4 CHAPTER 1. INTRODUCTION

characteristics of our future installation. Another important point is the development
system to use. Given the embedded nature of common IoT devices, being those sensors
or small actuator, is a key factor to use the right development environment. Such hard-
ware has to provide the widest set of configuration options and ports for easily evaluate
different digital protocols, power consumptions and for test and debugging purpose as
well. The choice of the operating system is also a decisive point. Given the huge amount
of abstractions and the incredible stability an operating system can provide, is impor-
tant to choose the one that better suits our needs. We can decide among more real
time oriented systems, closed source or community developed and this decision can of-
ten entails subtle considerations like: Which is the most comfortable to develop software
with? Which is easier to maintain and to evolve? Is this piece of code used by a wide
community of developers around the world? Other points regard supported standards,
compatible hardware for which a driver has already been developed and configuration
capabilities. Further, it is worth noting that IoT systems’ particular characteristics can
bring on other relevant problematics like low-level, difficult to write and test code, soft-
ware upgrade features and maybe the most important: software security considerations.
Finally, an important cross thematic that has to be taken into consideration at all levels
of the design is the fact that most devices we want to use have to be low-complexity and
low-powered. This can have a lot of implications because, even if there are hardware
systems with a lot of power related capabilities, for example system-on-chip where nearly
all integrated controllers have a low power functioning state, it is hard to find the right
software support and integrating such features can be an hassle.

Throughout the document we describe various solutions by reasoning on a certain
example of an IoT network. This is to draw attention to a specific practical case study,
given that IoT is only a conceptual word for describing a technological trend. We
chose smart sensor utility networks, often referred to as SUN, which is receiving enough
attention today and is an actual theme when it comes to talk about other famous “smart”
trends, like smart city, smart grid and smart agriculture. Special protocols have been
developed and are also rather considered in the open source community.

In this thesis we explore the Linux open source kernel and show how this renowned
operating system is suited for this matter by integrating a full-featured transceiver device
from Texas Instruments into an open hardware platform, known as AMBER, equipped
with a Freescale i.MX6 system on chip. This document is organized as follows. The
Chapter 2 is dedicated to an overview of IoT, how the actual industry is perceiving it and
some design guidelines that could be useful to better approach the development of smart
object networks. Chapter 3 explains the IEEE 802.15.4 protocol and why we have chosen
it for our purpose. Chapter 4 gives an overview of the Linux operating system and some
of its internal subsystems, such as the netlink network interface and Chapter 5 presents
the development hardware we utilized to conduct our experiments. The following section,
Chapter 6 indeed, explains how we dealt with the driver development, configuration of
host and target machines and some experimental outcomes. The intended audience
is anybody who wants to learn a bit of IoT concepts, how to manage an embedded
operating system and how to write a driver for the Linux network subsystem.

Chapter 2

IoT Background

The heart of this new technology is embodied in a wide spectrum of networked products,
systems, and sensors, which take advantage of proceedings in computing power, electron-
ics miniaturization, and network interconnections to offer new capabilities not previously
possible. The history of telecommunication systems, which has largely been developing
for the last two centuries, has passed through different fundamentals step, for example
the invention of the telegraph, the use of electromagnetic waves to convey information
and the construction of complex packet-switched networks. The latter, which dates back
to the ’60s, can be considered the most important because demonstrated the possibility
to achieve complex communications nearly without human intervention, so establishing
the right scenario for the birth of Internet. The concept of building more and more
automated systems led to the development of whole suite of protocols that eventually
became capable of running modern life-changing applications like home-banking, cloud
computing and an always increasing set of browsable web content. The most incredible
fact is that the effort in designing a general system, has shown the incredible general
purpose nature of the Internet architecture, which does not place inherent limitations on
the applications or services that can make use of the technology, thus making it possible
to imagine an hyper connected world.

This chapter tries to present the concept of Internet of Things as a thematic that
has important technical questions, difficult industrial implications and issues concerning
society in a broader sense. We start from a short historical overview with important
definitions invented by famous institutions, then illustrate some design guidelines which
can assist every IoT related project and finally some issues concerning security, privacy,
interoperability and standardizations, which can also help in approaching and dealing
with this new technological trend.

2.1 Origins

The term Internet of Things was first used in 1999 by British technology pioneer Kevin
Ashton to describe a system in which objects in the physical world could be connected
to the Internet. Ashton coined the term to illustrate the power of connecting radio-

5

6 CHAPTER 2. IOT BACKGROUND

frequency identification tags used in corporate supply chains to the Internet in order
to count and track goods without the need for human intervention. The key idea was
to imagine the actual Internet infrastructure augmented with “sensing” capabilities to-
wards the physical world, thus opening an astonishing new scenario of applications and
possibilities where the concepts of feedback and control are pushed beyond their lim-
its. In the 1990s, advances in wireless technology allowed machine-to-machine (M2M)
enterprise and industrial solutions for equipment monitoring and operation to become
widespread. Many of these early M2M solutions, however, were based on closed purpose-
built networks and proprietary or industry-specific standards, rather than on Internet
Protocol IP-based networks and Internet standards. Using IP to connect devices other
than computers to the Internet is not a new idea. The first Internet device, an IP enabled
toaster that could be turned on and off over the Internet, was featured at an Internet
conference in 1990. If the idea of connecting objects to each other and to the Internet is
not new, it is reasonable to ask, “Why is the Internet of Things a newly popular topic
today?” From a broad perspective, the confluence of several technologies and market
trends is making it possible to interconnect more and smaller devices cheaply and easily.

It is also important to understand that the environment in which IoT is growing
is not self contained. Instead, it is accompanied by progresses in other, even related,
disciplines and a number of technologies have already been established, especially in
the industry. The following is a list of macro trends that are becoming more and more
consolidated and will certainly favour the diffusion of IoT.

Ubiquitous connectivity Low-cost, high-speed, pervasive network connectivity, es-
pecially through licensed and unlicensed wireless services and technology, makes
almost everything “connectable”.

Widespread adoption of IP based networking IP has become the dominant global
standard for networking, providing a well defined and widely implemented plat-
form of software and tools that can be incorporated into a broad range of devices
easily and inexpensively.

Computing economics Driven by industry investment in research, development, and
manufacturing, Moores law continues to deliver greater computing power at lower
price points and lower power consumption.

Miniaturization Manufacturing advances allow cutting-edge computing and communi-
cations technology o be incorporated into very small objects. Coupled with greater
computing economics, this has fueled the advancement of small and inexpensive
sensor devices, which drive many IoT applications.

Advances in Data Analytics New algorithms and rapid increases in computing power,
data storage, and cloud services enable the aggregation, correlation, and analysis
of vast quantities of data, these large and dynamic datasets provide new opportu-
nities for extracting information and knowledge.

2.2. APPLICATIONS 7

Rise of Cloud Computing Which leverages remote, networked computing resources
to process, manage, and store data, allows small and distributed devices to interact
with powerful back-end analytic and control capabilities.

From this perspective, the IoT represents the convergence of a variety of computing
and connectivity trends that have been evolving for many decades. At present, a wide
range of industry sectors including automotive, healthcare, manufacturing, home and
consumer electronics, and well beyond, are considering the potential for incorporating
IoT technology into their products, services, and operations. The world is definitely
ready to accept these new ideas, from an economical point of view as well as cultural.

2.2 Applications

As we are going to see in following sections, another important aspect of IoT is the
difficulty in attributing meaning to involved concepts. In fact, when it comes to reason
about the applicability of such technology, it is easy to understand that a well defined
horizon doesn’t exist and the scope of this thematic will probably change considerably.
Improvements the technology is undergoing might make us capable of connecting more
and more devices in the future, and so it is actually impossible to force any bounds on
what we are referring to with the term “Things”. These days, the industry is studying the
scope of this new technology trying to better understand how the phenomenon behaves
and has produced an assortment of various sectors which the IoT will probably have a
considerable impact on.

Smart home Internet-enabled appliances, home automation components, and energy
management devices. Offering more security and energy-efficiency.

Healthcare services Personal IoT devices like wearable fitness and health monitoring
devices and network-enabled medical devices. This technology promises to be
beneficial for people with disabilities and the elderly, enabling improved levels of
independence and quality of life at a reasonable cost.

Smart cities Systems like networked vehicles, intelligent traffic systems, and sensors
embedded in roads and bridges. Minimize congestion and energy consumption.

Agriculture, industry and energy production Increased availability of information
along the value chain of production using networked sensors.

It is widely known that industrial and economical systems can shape a lot more than
the simple market. The following is a list of locations and spaces where we can expect
to see huge transformations caused by advancements in previous industrial sectors.

• Human devices attached or inside the human body

• Home buildings where people live

8 CHAPTER 2. IOT BACKGROUND

• Retail environments spaces where consumers engage in commerce

• Offices spaces where knowledge workers work

• Factories standardized production environments

• Worksites custom production environments

• Vehicles systems inside moving vehicles

• Cities urban environments

• Outside between urban environments and outside

2.3 Projections

The incredible amount of popularization material regarding IoT that has been published
in all innovation fields has led a lot of famous companies and financial corporations to
conduct statistical projections in order to have a measure of how the market will behave
in the future. The following are some quotes:

Cisco, for example, projects more than 24 billion Internet connected

objects by 2019.

Morgan Stanley, however, projects 75 billion networked devices by 2020.

Huawei forecasts 100 billion IoT connections by 2025.

McKinsey Global Institute suggests that the financial impact of IoT on

the global economy may be as much as $3.9 to $11.1 trillion by 2025.

IoT as a revolutionary fully interconnected “smart” world of progress, efficiency, and
opportunity, with the potential for adding billions in value to industry and the global
economy. Attention-grabbing headlines about the hacking of Internet-connected auto-
mobiles, surveillance concerns stemming from voice recognition features in “smart” TVs,
and privacy fears stemming from the potential misuse of IoT data have captured public
attention. It is very important to understand that such considerations can potentially
generate an everlasting debate about pros and cons of the modern Internet and given
the immense impact it might have on industry and society it could become a complex
topic to understand.

2.4 Definitions

There are different definitions proposed by a multitude of societies, like Internet En-
gineering Task Force IETF, International Telecommunication Union ITU and IEEE.

2.4. DEFINITIONS 9

This reveals an important point in understanding the concept of IoT: there are dif-
ferent perspectives to be factored into discussions, in order to better understand the
whole potential of such technology. The following is simply a list extracted from various
documents regarding Internet of Things.

• Internet Architecture Board IAB begins RFC 7452 Architectural Considerations
in Smart Object Networking with this description: The term “Internet of Things”
denotes a trend where a large number of embedded devices employ communication
services offered by the Internet protocols. Many of these devices, often called
“smart objects”, are not directly operated by humans, but exist as components in
buildings or vehicles, or are spread out in the environment.

• Internet Engineering Task Force IETF introduces the term “smart object network-
ing” as a commonly used alias for the Internet of Things. In this context, “smart
objects” are devices that typically have significant constraints, such as limited
power, memory, and processing resources, or bandwidth. Work in the IETF is or-
ganized around specific requirements to achieve network interoperability between
several types of smart objects.

• International Telecommunication Union ITU, Overview of the Internet of Things,
discusses the concept of interconnectivity, but does not specifically tie the IoT
to the Internet: A global infrastructure for the information society, enabling ad-
vanced services by interconnecting (physical and virtual) things based on existing
and evolving interoperable information and communication technologies. Note1:
Through the exploitation of identification, data capture, processing and communi-
cation capabilities, the IoT makes full use of things to offer services to all kinds of
applications, whilst ensuring that security and privacy requirements are fulfilled.
Note2: From a broader perspective, the IoT can be perceived as a vision with
technological and societal implications.

• IEEE Communications Magazine links the IoT back to cloud services: The In-
ternet of Things is a framework in which all things have a representation and a
presence in the Internet. More specifically, the Internet of Things aims at offering
new applications and services bridging the physical and virtual worlds, in which
Machine-to-Machine communications represents the baseline communication that
enables the interactions between “things” and applications in the cloud.

Different perspectives exist because there are many different ways for imaging an hyper
connected world where each scenario being equally likely to happen and nobody knows
which definition will be more appropriate. However, with the help of radio technology
and the possibility to embed relatively small machines in almost every aspect of our life,
it is feasible that one day there will be a single well structured information system with
the capability of conditioning our life, society and the way we do business.

10 CHAPTER 2. IOT BACKGROUND

2.5 Design Guidelines

In this section we concentrate on what kind of difficulties may arise in developing IoT
systems, from a more technical point of view. A designer wishing to build a modern
style network of small smart objects should consider in advance that such matter is fully
made up of issues each pertaining to very different disciplines, like hardware assembled,
software design and developing, network topologies and architectures mixing general
purpose protocols with ad hoc communication methods. To the extent of presenting such
subtleties, in this part we focus on a general overview and a more abstract description
of network topics, leaving a more detailed presentation about protocol peculiarities and
software developing concerns to following chapters.

As previously described, establishing a plain to see definition for Internet of Things
is a difficult task. For this reason, while approaching the design of a system, is even
more important to put effort in specifically understand what kind of objects are be-
ing connected and what protocols to employ. Reasoning about devices capabilities and
design goals should be given a lot of attention, because choosing the wrong hardware
component can enormously affect the final outcome. Typical parameters like bandwidth,
memory, instructions per second IPS, size, energy consumption all participate and, given
the attention to low power applications, is not even clear which devices are able to run
Internet protocols at all. Another important point regards the network effect that orig-
inate. Interconnecting smart objects enables new use cases and products and increasing
the number of products that use Internet Protocol Suite on smaller and smaller devices
offers the ability to process, visualize, and gain insight from the collected sensor data.
Thus the best option is to account for this particular phenomenon from primal design
choices, in order to fully govern and take advantage from this effect that will probably
expand beyond our imagination.

The following is a short discussion on important topics about developing smart net-
works. It is largely based on the IAB document Architectural Considerations in Smart
Object Networking RFC 7452.

2.5.1 Device Characteristics

As announced in Chapter 1 in order to match our considerations with a meaningful prac-
tical example, we present our reasoning by analyzing smart metering utility networks.
For such systems to express their full power, is probable that a lot of small devices are
scattered in a particular territory, as an example agricultural production systems might
need to monitor environmental parameters in immense areas. So the first issue is about
the radio technology which is able to cover the whole space, with considerations on which
radio band is the most effective to use, which modulations scheme will match the par-
ticular conditions and how many devices to deploy. Second and nonetheless important
is to answer to the following question: “How long is the device designed to operate?” If
the particular application doesn’t provide devices with continuous electrical supply, is
very likely to have constraints on battery life. This particular intent is a quite hot topic
today, because we can see a lot of hardware manufacturers marketing on devices current

2.5. DESIGN GUIDELINES 11

consumption characteristics, but this concept is not to be taken for granted. If the par-
ticular device can alternate between sleep state and active state, is easy to understand
that in order to properly handle this switching configuration is necessary to have the
right software support, which could not be an easy task as developing and integrating it
in the whole design process may entail significant efforts. A collateral issue regards the
maintenance policy of the deployed system. If it is important to easily access devices,
for example to replace batteries, is also a first to understand how this affect the security
model. Strengthening the system against tampering attacks must be carefully handled.
Also, if a particular device is able to act as an actuator is necessary to properly model
the network as well, because in the opposite case with only sensing devices a collector
approach would serve better. Finally, is important to understand if the deployed system
will be connected to Internet, because making the communications to enter and to exit
the local area network could also be difficult and implicate particular network topologies.

2.5.2 Communication Models

One of the biggest design challenges in networked product is the right communication
model to employ. This can have important implications on overall performances, on
expanding capabilities and even on security concerns. Fortunately, a full set of well
crafted and long lasting design patterns are available when there are difficulties every
designer encounters. This is especially true for network technologies that had to fit in a
wide application contexts at the very beginning, like the Internet itself. The IAB selects
the following for being particularly suited for smart object networks.

Device-to-device Communications

Figure 2.1: Direct communication model

The most simple network scenario, as we see in Figure 2.1, is to have one device
speaking directly with another, for example we can consider a light switch that talks to
a light bulb in order to activate/deactivate it. Even though such implementations can
avoid complex network related topics, like addressing modes, link settings and routing
mechanisms, having a device autonomously talk with another peer can be very difficult
to design. Paring mechanisms, like that of Bluetooth, must be very adaptable to different
applicative contexts and implementing intelligent protocol logic may entail the need of
powerful computing devices and difficult-to-program software architectures. Achieving

12 CHAPTER 2. IOT BACKGROUND

interoperability among different manufacturers can be another trouble, because the stan-
dardization process can be remarkably durable and, in fact, choosing and contributing
to an open standard can be a good option.

Device-to-cloud Communications

Figure 2.2: Device communicating with cloud services

As an alternative we consider now Figure 2.2, it is feasible to connect devices to
the Internet, which can relax some design issues for the network being intrinsically a
protocol translator, so questions like devices interoperability can be very well handled.
But it is worth noting that a device able to communicate over IP has to support a whole
set of protocols and this can be unacceptable, for example attaching a IEEE 802.11ay
capable device to the light bulb can be considered exaggerated (frequency band: 60 GHz,
transmission rate: 20-40 Gbps and range distance: 500 meters).

Device-to-gateway Model

Instead of being connected to the Internet directly, it is possible to place a gateway sys-
tem between devices and the more global network. The gateway can act as a converter
between the IP and a much more simpler network. We can see and example in Figure
2.3. Every device, for example simple sensors producing data in a low rate context, can
communicate only with the gateway, thus implementing the essential part of communi-
cation and leaving the complex network translations to the gateway. This model is very
appropriate for smart sensor networks, because devices can be very simple, low-power
and long lasting.

2.5. DESIGN GUIDELINES 13

Figure 2.3: Communications passes through the gateway

Back-end Data-sharing Model

The last communication pattern has been devised for better handling data sharing to-
wards third parties services. Data collected from a particular smart sensor installation is
not always consumed by a single application service over the Internet, instead is possible
to have different more general data collectors which has access to the sensor network.
In this case a back-end architecture is more suitable. The “owner” Internet application
provider must implement two services: the first is responsible to handle all data gath-
ering and provide this information to the end user, the other is to implement the same
functionality to be consumed by other Internet servers. This last capability may entail
a different architecture with different protocols and interfaces.

2.5.3 Reuse Internet Protocols

Because building very small, battery-powered devices is challenging, it may be difficult
to resist the temptation to build solutions tailored to specific applications, or even to
redesign networks from scratch to suit a particular application, in order to gain control

14 CHAPTER 2. IOT BACKGROUND

Figure 2.4: The first Internet service provider might be configured to talk to other
services

over the whole system behaviour. An alternative to redesigning protocols is to consider
the success of the Internet, a set of consensus-based, open and transparent standards
which evolved considerably from the beginning and can allegedly last for very long time.
The general architecture of Internet has proved to be very flexible and the fact that
the world biggest network is already deployed and functioning by the use of IP should
convince designer and business to take part in its space of connecting capabilities. But, as
the Internet has evolved, is also true that while certain protocols and protocol extensions
have become the norm, others have become difficult to use in all circumstances.

Taking into account all these considerations is particularly important for smart ob-
jects, as there is often a desire to employ specific features. For instance, from a pure
protocol-specification perspective, some transport protocols may be more desirable than
others. However, the most important goal is to design applications so that the par-
ticipating devices can easily interact with multiple other applications and the effort to
extend the communication potential should be kept to a minimum.

2.6. ISSUES 15

2.5.4 Design for a Change

Given the fact that a technology can be superseded in few months, embracing rapid
innovation in the design process should be a priority. A relevant notion is that of
designing for variation in outcome. With this goal in mind the designer is able to
build systems that can be relatively easy to alter and adapt to particular needs. For
example, having a solid software update mechanism is needed not only for dealing with
the changing Internet communication environment and for interoperability improvements
but also for adding new features and for fixing security bugs.

Common indications for achieving this purpose are breaking complex systems into modu-
lar parts, designing for choice to permit the different players to express their preferences.

2.6 Issues

When the world faces the coming of a new technology it is important to understand
how it could impact with changes that will probably be introduced, as these can affect
enormously how the society interacts with the environment in which this transformation
occurs. A worth noting example of a groundbreaking innovation we have seen in the
recent past is the Internet itself. An important amount of business activities, how people
interact with each other and academic research have been modified considerably. IoT
may force a shift in thinking if the most common interaction with the Internet, and
the data derived and exchanged from that interaction, comes from passive engagement
with connected objects in the broader environment. The potential realization of this
outcome, an Hyper connected world, is a testament to the general purpose nature of
the Internet architecture, which does not constraint application or service data exchange
on the properties of the underlying infrastructure, at least from a general point of view.

This section wants to illustrate that a big innovation may entail also significant
problems the society will have to deal with, and the deeper the transformation the subtler
and the more harmful the impact can be. Professionals, companies and countries have to
acquire the necessary knowledge in order to accurately reason and to properly maintain
an ever evolving society, which become every day more and more technology based. The
IoT designer should also take these considerations into account.

2.6.1 Security

An important popular topic that is invading all information technology related disciplines
is that of security. It seems an intrinsic property of a system that when the inner working
complexity reaches a big level, it is not only the development process that is affected
but also the possibility to include obscure security vulnerabilities terribly grows. Such
thematic is more important today than it was some years ago and even if a lot of
countermeasures has been developed and wide deployed in the world, like cryptographic
systems and strengthen authentication protocols, the complexity which our daily use
systems depend on suggests that the battle with cyber attacks is not ended.

16 CHAPTER 2. IOT BACKGROUND

As we increasingly connect devices to the Internet, new opportunities to exploit po-
tential security vulnerabilities grow. Poorly secured IoT devices could serve as entry
points for cyberattack by allowing malicious individuals to re-program a device or cause
it to malfunction. Poorly designed devices can expose user data to theft by leaving data
streams inadequately protected. Failing or malfunctioning devices also can create secu-
rity vulnerabilities. Along with potential security design deficiencies, the sheer increase
in the number and nature of IoT devices could increase the opportunities of attack.
When coupled with the highly interconnected nature of IoT devices, every poorly se-
cured device that is connected online potentially affects the security and resilience of the
Internet globally, not just locally. To complicate matters, our ability to be operative in
our daily activities without using devices or systems that are Internet-enabled is likely to
decrease in a hyper connected world. This increasing level of dependence on IoT devices
and the Internet services they interact with also increases the pathways for criminals to
gain access to devices.

IoT devices tend to differ from traditional computers and computing devices in im-
portant ways that challenge security:

• Many Internet of Things devices, such as sensors and consumer items, are de-
signed to be deployed at a massive scale that is orders of magnitude beyond that
of traditional Internet-connected devices. As a result, the potential quantity of
interconnected links between these devices is unprecedented. Further, many of
these devices will be able to establish links and communicate with other devices
on their own in an unpredictable and dynamic fashion.

• Many IoT deployments will consist of collections of identical or near identical
devices. This homogeneity magnifies the potential impact of any single security
vulnerability by the sheer number of devices that all have the same characteristics.

• Many Internet of Things devices will be deployed with an anticipated service life
many years longer than is typically associated with high-tech equipment. Further,
these devices might be deployed in circumstances that make it difficult or impos-
sible to reconfigure or upgrade them, or these devices might outlive the company
that created them, leaving orphaned devices with no means of long-term support.
These scenarios illustrate that security mechanisms that are adequate at deploy-
ment might not be adequate for the full lifespan of the device as security threats
evolve. As such, this may create vulnerabilities that could persist for a long time.
This is in contrast to the paradigm of traditional computer systems that are nor-
mally upgraded with operating system software updates throughout the life of the
computer to address security threats.

• Some IoT devices are likely to be deployed in places where physical security is
difficult or impossible to achieve. Attackers may have direct physical access to
IoT devices. Anti-tamper features and other design innovations will need to be
considered to ensure security.

2.6. ISSUES 17

• Some IoT devices, like many environmental sensors, are designed to be unobtru-
sively embedded in the environment, where a user does not actively notice the
device nor monitor its operating status. Additionally, devices may have no clear
way to alert the user when a security problem arises, making it difficult for a user
to know that a security breach of an IoT device has occurred. A security breach
might persist for a long time before being noticed and corrected if correction or
mitigation is even possible or practical. Similarly, the user might not be aware
that a sensor exists in her surroundings, potentially allowing a security breach to
persist for long periods without detection.

In order to oppose this increasing security weaknesses some guidelines has to be
followed. We propose here some indications that The Internet Society has carefully
organized as follows. These are not solutions, instead some questions that can serve in
understanding how to reason about the complex thematic of security.

Good design practices What are the set of best practices for engineers and develop-
ers to use to design IoT devices to make them more secure? How do lessons learned
from Internet of Things security problems get captured and conveyed to develop-
ment communities to improve future generations of devices? What training and
educational resources are available to teach engineers and developers more secure
IoT design?

Standards and metrics What is the role of technical and operational standards for
the development and deployment of secure, well-behaving IoT devices? How do
we effectively identify and measure characteristics of IoT device security? How do
we measure the effectiveness of Internet of Things security initiatives and counter-
measures? How do we ensure security best practices are implemented?

Data confidentiality, authentication and access control What is the optimal role
of data encryption with respect to IoT devices? Which encryption and authentica-
tion technologies could be adapted for the Internet of Things, and how could they
be implemented within an IoT devices constraints on cost, size, and processing
speed? What are the foreseeable management issues that must be addressed as a
result of IoT-scale cryptography? Are the end-to-end processes adequately secure
and simple enough for typical consumers to use?

Field upgradeability With an extended service life expected for many IoT devices,
should devices be designed for maintainability and upgradeability in the field to
adapt to evolving security threats? New software and parameter settings could be
installed in a fielded IoT device by a centralized security management system if
each device had an integrated device management agent. But management systems
add cost and complexity, could other approaches to upgrading device software be
more compatible with widespread use of IoT devices? Are there any classes of IoT
devices that are low-risk and therefore dont warrant these kinds of features? In
general, are the user interfaces IoT devices expose (usually intentionally minimal)

18 CHAPTER 2. IOT BACKGROUND

being properly scrutinized with consideration for device management (by anyone,
including the user)?

Regulation Should device manufacturers be penalized for selling software or hardware
with known or unknown security flaws?

Collaborative model Has emerged as an effective approach among industry, govern-
ments, and public authorities to help secure the Internet and cyberspace, including
the Internet of Things. This model includes a range of practices and tools including
bidirectional voluntary information sharing, effective enforcement tools, incident
preparedness and cyber exercises, awareness raising and training, agreement on
international norms of behavior, and development and recognition of international
standards and practices. Continued work is needed to evolve collaborative and
shared risk management-based approaches that are well suited to the scale and
complexity of IoT device security challenges of the future.

2.6.2 Privacy Considerations

Respect for privacy rights and expectations is integral to ensuring trust in the Internet,
and it also impacts the ability of individuals to speak, connect, and choose in meaningful
ways. IoT often refers to a large network of sensor-enabled devices designed to collect
data about their environment, which frequently includes data related to people. This
data presumably provides a benefit to the devices owner, but frequently to the devices
manufacturer or supplier as well. IoT data collection and use becomes a privacy con-
sideration when the individuals who are observed by IoT devices have different privacy
expectations regarding the scope and use of that data than those of the data collector.
When individual data streams are combined or correlated, often a more invasive digital
portrait is painted of the individual than can be realized from an individual IoT data
stream. This data-aggregation effect can be particularly potent with respect to IoT
devices because many produce additional metadata like time stamps and geolocation in-
formation, which adds even more specificity about the user. Generally, privacy concerns
are amplified by the way in which the Internet of Things expands the feasibility and
reach of surveillance and tracking. Characteristics of IoT devices and the ways they are
used redefine the debate about privacy issues, because they dramatically change how
personal data is collected, analyzed, used, and protected.

2.6.3 Interoperability and Standards

In the traditional Internet, interoperability is the most basic core value, the first re-
quirement of Internet connectivity is that “connected” systems be able to “talk” by the
usage of protocols. In practicality, interoperability is more complex. Interoperability
among IoT devices and systems happens in varying degrees at different layers within the
communications protocol stack between the devices. Furthermore, full interoperability
across every aspect of a technical product is not always feasible, necessary, or desirable.
Beyond the technical aspects, interoperability has significant influence on the potential

2.6. ISSUES 19

economic impact of IoT. Well-functioning and well-defined device interoperability can
encourage innovation and provide efficiencies for IoT device manufacturers, increasing
the overall economic value of the market. Also, interoperability is fundamentally valu-
able from the perspective of both the individual consumer and organizational user of
these devices. It facilitates the ability to choose devices with the best features at the
best price and integrate them to make them work together.

20 CHAPTER 2. IOT BACKGROUND

Chapter 3

Protocols Description

As outlined in previous sections, an important part of the design process in order to
implement smart objects networks is to carefully analyze the protocol suite that best
fit a particular use. In this chapter we follow our application example of smart sensor
networks and expand our considerations in order to choose the right protocol stack.
Instead of implementing a specific one for our needs, we decided to concentrate on the
selection of an open and wide accepted standard. The famous Wireless Personal Area
Networks WPAN IEEE 802.15 has recently addressed the side use case of smart metering
networks. More specifically the committee has completed different projects that can be
well matched with our application. The standardization process initially started with the
document 802.15.4 which addresses low power applications and successively produced
the amendment 802.15.4g that is instead purposely designed to handle smart utility
network. In this chapter we explain the relations among these task groups, give an
overview of the standard specification and show why these protocols are suited for smart
metering networks.

A standardization process, such as the one conducted by organizations like IEEE
Standards Association, International Electrotechnical Commission IEC, Internet Engi-
neering Task Force IETF or International Organization for Standardization ISO, is a
well defined process whose aim is to publish documents that establish specifications and
procedures designed to maximize the reliability of the materials, products, methods and
services that can have impact in the industry sector and indeed on final users. The goal
is to guarantee product functionality, compatibility and facilitate interoperability. The
industry sector can surely benefit from standards because adopting consistent standard-
ized protocols that are universally understood and adopted leads to simpler product
development, speeds time-to-market and eventually eases the international trade. Two
important things to note about standards are that the development process is very rigid
and goes through important steps in order to assure the quality of the outcome. Secondly
and determinant is the fact that the so called working group recruited to perform the job
is composed of a wide selection of components from people, companies, organizations,
non-profits, government agencies who volunteered to support the development of the
standard. This way a lot of different points of view, in the terms of design perspective

21

22 CHAPTER 3. PROTOCOLS DESCRIPTION

and different goals, are sifted and examined to achieve the most general solution.
The content of this chapter is organized as follows. Initially, we present the famous

ISO OSI communication model that can be very useful to better understand the compo-
nents involved in a smart objects network, and also for clarifying considerations that are
presented in later chapters about the Linux software architecture. Secondly, we illustrate
the general working principles of the IEEE 802.15.4 protocol, explaining the amendment
4g that we selected for our application. Finally, we present the 6LoWPAN technology
that can enable IPv6 traffic even on constrained data link layers. The latter, which has
not yet been fully completed, may permit one day a powerful network of small devices to
be deployed on a vast scale, realizing the full potential of the Internet of Things concept.

3.1 OSI Communication Model

An incredible and extensively used standard for networking is the ISO Open Systems
Interconnection model (OSI). It standardizes the communication functions of a telecom-
munication or computing system without regards to the internal structure or imple-
menting technology. As such, this communications model gives an incredible support
for interoperability concerns because it permits to specify a single protocol with the abil-
ity of being precise about its scope, thus permitting to ease the development of complex
distributed systems for telecommunication.

The ISO model, following the level based abstraction, partitions the communicating
facilities of a system into several abstraction layers. The classical organization consid-
ers seven layers: physical, data link, networking, transport, session, presentation and
application.
The important thing to note is that to each layer corresponds a single protocol which
can be defined by a standard. This way the scope of the standard is well contained and
understood. As we see in Figure 3.1, each layer utilizes the functionality provided by the
underlying layer, implements the specific protocols and offers its services to the upper
layer. Two important concepts introduced by the OSI model are the protocol data unit
PDU and the encapsulation mechanism. Each layer exchange the information in terms
of packets containing the respective PDU, these are passed down in the abstraction heap
and are encapsulated as a service data unit SDU for the lower layer, adding protocols
information as header data.
A brief description of each layer follows.

Physical layer It defines the electrical and physical specifications of the data connec-
tion and the relationship between a device and a physical transmission medium. It
determines the transmission mode: simplex, half duplex and full duplex, and spec-
ify the right modulation scheme in order to transmit bits on a physical medium,
whether the encoded bits will be transmitted by baseband or broadband signaling.

Data link The data link layer provides node-to-node data transfer. It detects and
possibly corrects errors that may occur in the physical layer. It, among other
things, defines the protocol to establish and terminate a connection between two

3.1. OSI COMMUNICATION MODEL 23

Figure 3.1: OSI communication model

physically connected devices and also defines the protocol for flow control between
them. Important functionalities that are commonly seen as two data link sublayers
are: medium access control MAC, responsible for controlling how devices access a
common medium, and logical link control LLC, for identify network layer protocol
and then encapsulating them.

Networking The concept of network can be explained as a medium to which many
nodes can be connected, on which every node has an address and which permits
nodes connected to it to transfer messages to other nodes connected to it by merely
providing the content of a message and the address of the destination node and
letting the network find the way to deliver the message to the destination node,
possibly routing it through intermediate nodes. The network layer provides the
functional and procedural means for transferring variable length data sequences
within the same network. It translates logical network address into physical ma-
chine address. A number of layer-management protocols are routing protocols,
multicast group management, network-layer information and error, and network-
layer address assignment.

24 CHAPTER 3. PROTOCOLS DESCRIPTION

Transport The transport layer provides the functional and procedural means of trans-
ferring variable-length data sequences from a source to a destination host via one
or more networks, while maintaining the quality of service functions. The famous
TCP pertains to this layer.

Session The session layer controls the connection between computers. It establishes,
manages and terminates the connections between the local and the remote appli-
cation.

Presentation This layer is an adaptation layer responsible for establishing the right
context between application layer entities.

Application The application layer interfaces with the user and implement the final
information exchange protocol, for example the downloading of an HTML page.

As the objective of this thesis is to understand how to internet-enable an embedded
system for the sake of a smart sensor network, in the following chapters we focus only on
the physical and on the MAC layer, and give an overview of the problematics to match
a data link layer specifically designed for systems with low resources with the network
layer IPv6 protocol suit.

3.2 IEEE 802.15.4

The IEEE 802.15 working group’s focus is the development of consensus standards for
Personal Area Networks or short distance wireless network. The process is overseen by
the IEEE Standards Association which in its manifesto shows a list of distinguishing
principles that characterize all IEEE standardization activity: openness, consensus, bal-
ance and right of appeal. Those guarantee a wide participation of industry partners and
especially an open process. Activities of this working group regard wireless networking
of portable and mobile computing devices such as PCs, Personal Digital Assistants, pe-
ripherals, cell phones, pager and consumer electronics. Main goals concern broad market
applicability, coexistence and interoperability with other wired and wireless networking
solutions. The portfolio of different standards produced by different Task Groups in-
cludes Bluetooth technology, high rate WPAN, mesh networking specifications, body
area networks and low rate wireless personal area network LR-WPAN. The latter, also
known as IEEE 802.15.4, deals with low data rate, very long power battery life and very
low complexity, thus fitting perfectly for our application.

In this section we present a general overview of the standard and its G amendment,
focusing on characteristics that appear more adequate for sensor networks.

3.2.1 Scope

Wireless personal area network WPANs are used to convey information over relatively
short distances and in contrast with wireless local area network WLAN, connections ef-
fected via WPANs are characterized by having no infrastructure supporting the network.

3.2. IEEE 802.15.4 25

This way common interactions are mostly run device per device, giving the possibility
of being very simple, power-efficient and be extended to an incredible wide range of
different types. But, in order to organize efficient communications, the protocol has to
be very flexible, extendible and adapts to different scenarios.

The standard defines the physical layer PHY and medium access control MAC
sublayer specifications for low-data-rate wireless connectivity with fixed, portable, and
moving devices with no battery or very limited battery consumption requirements typi-
cally operating in the operating space of 10 m (the amendment G has the specific purpose
of extending this range for outdoor operative conditions). The row data rate is estab-
lished to be 250 kb/s for satisfying a set of different applications but is also scaleable
down to the needs of very low-data traffic instances, for example 20 kb/s or below. The
frequency bands are not fixed and a lot of different modulations scheme are provided, a
Bluetooth like 2.5 GHz for smaller ranges and an entire set of sub-GigaHertz bands that
more appropriate for longer distances and unfavorable environments. In addition, the
standard specifies a PHY which is capable of precision ranging that is accurate to one
meter and a MAC layer security mechanism that implements CCM*. It is important
to note that although this standard specifies a full physical layer, in respect of the OSI
model, only the MAC sublayer of the data link abstraction is elaborated. Designer, in
order to realize a full data link layer, must take into consideration that certain aspects,
as we explain in the following, have to be completed. Common technologies using IEEE
802.15.4’s MAC services that we may found in practice are ZigBee, WirelessHART,
ISA100.11a and of course the 6LoWPAN adaptation layer.

3.2.2 General Description

The first argument regards the components which constitute a personal area network
PAN. In this network there can be two types of devices: a full-function device and
a reduced-function device, respectively FFD and RFD. An FFD is a device that
is capable of serving as a PAN coordinator. An RFD is a device that is not capable of
serving as coordinator. An RFD is intended for applications that are extremely simple,
such as a light switch or a passive infrared sensor; it does not have the need to send large
amounts of data and only associates with a single FFD at a time. Consequently, the RFD
can be implemented using minimal resources and memory capacity. Such distinction
permits to fully specialize network configurations in the way that is more appropriate
for the given application, deploying only the resources that are really necessary.

Two networks topologies are supported. We can see the two different configuration
in Figure 3.2. In the star topology, the communication is established between devices
and a single central controller, called the PAN coordinator. A device typically has
some associated application and is either the initiation point or the termination point for
network communications. A PAN coordinator can also have a specific application, but
it can be used to initiate, terminate, or route communication around the network. The
PAN coordinator is the primary controller of the PAN. Applications that benefit from
a star topology include home automation, personal computer peripherals, games, and
personal health care. The peer-to-peer topology, however, differs from the star topology

26 CHAPTER 3. PROTOCOLS DESCRIPTION

Figure 3.2: Different network topologies

in that any device is able to communicate with any other device as long as they are
in range of one another. They also allows more complex network formations to be
implemented, such as mesh networking topology and typical applications are industrial
control and monitoring, wireless sensor networks, asset and inventory tracking, intelligent
agriculture, and security. In a peer-to-peer network multiple hops can route messages
from any device to any other device on the network, but this is the task of upper layers.
In the network two addresses modes can be use, the extended address which is statically
assigned to device and the short address that was allocated by the PAN coordinator
during association. As the extended is 64 bits long and the short only 16 bits, this
feature allows for traffic optimizations that can be very effective in practice, in that only
the necessary payloads are transmitted.

3.2.3 Superframe Structure

Another very useful power optimization is the superframe structure. The format of
the superframe is defined by the coordinator. The superframe is bounded by network
beacons sent by the coordinator, as illustrated in Figure 3.3, and is divided into 16 slots
of equal duration. Optionally, the superframe can have an active and an inactive portion.
During the inactive portion, the coordinator is able to enter a low-power mode. The
beacon frame transmission starts at the beginning of the first slot of each superframe.
If a coordinator does not wish to use a superframe structure, it will turn off the beacon
transmissions. Anyway, beacons are used to synchronize the attached devices, to identify
the PAN, and to describe the structure of the superframes.

This superframe structure is what let the PAN coordinator governs all communica-
tions, that is, deciding active and inactive periods of time and allocating guaranteed
time slots GTSs, each assigned to a specific device. In this manner a single device is
able to know when is its transmission time and regulate to perform radio activity only in
that period of time. This is incredibly useful because a device can alternate between an

3.2. IEEE 802.15.4 27

Figure 3.3: Superframe structure imposed by the coordinator

active status and an idle one which can eventually save a lot of resources. As example,
battery-powered devices will require duty-cycling to reduce power consumption. These
devices will spend most of their operational life in a sleep state and periodically listens
to the RF channel in order to determine whether a message is pending. This mechanism
allows the application designer to decide on the balance between battery consumption
and message latency. Higher powered devices have the option of listening to the RF
channel continuously.

3.2.4 Data Transfer Model

In order to completely regulate transfer activities the standard define three type of
transactions. The first one is the data transfer to a coordinator in which a device
transmits the data. The second transaction is the data transfer from a coordinator and
the device receives the data. The third transaction is the data transfer between two
peer devices. In star topology, only two of these transactions are used because data is
exchanged only between the coordinator and a device. In a peer-to-peer topology, data is
exchanged between any two devices on the network, consequently all three transactions
are used in this topology.

The IEEE 802.15.4 WPAN employs various mechanisms to improve the probability
of successful data transmission.

• CSMA-CA mechanism

• ALOHA mechanism

• optional frame acknowledgment signal

• data verification

28 CHAPTER 3. PROTOCOLS DESCRIPTION

3.2.5 Security Mechanisms

The very nature of ad hoc networks and their cost objectives impose additional secu-
rity constraints, which perhaps make these networks the most difficult environments
to secure. Devices are low-cost and have limited capabilities in terms of computing
power, available storage, and power drain and it cannot always be assumed they have a
trusted computing base nor a high-quality random number generator aboard. Commu-
nications cannot rely on the online availability of a fixed infrastructure and might involve
short-term relationships between devices that never have communicated before. These
constraints severely limit the choice of cryptographic algorithms and protocols and influ-
ence the design of the security architecture because the establishment and maintenance
of trust relationships between devices need to be addressed with care. The cryptographic
mechanism used by the standard is based on symmetric-key cryptography and uses keys
that are provided by higher layer processes. The establishment and maintenance of these
keys are outside the scope of this standard. The mechanism assumes a secure implemen-
tation of cryptographic operations and secure and authentic storage of keying material.
As usual the following services are implemented: Data confidentiality, Data authenticity
and Replay protection. According to the usual power consumption efficiency the stan-
dard permit to adapt the protection on a frame-by-frame basis and allows for varying
levels of data authenticity.

The particular technology employed is the CCM*, a generic combined encryption
and authentication block cipher mode. The CCM* mode coincides with the original
specification for the combined counter with CBC-MAC for messages that require au-
thentication and, possibly, encryption, but also offers support for messages that require
only encryption. Moreover, it can be used in implementation environments for which
the use of variable-length authentication tags, rather than fixed-length authentication
tags only, is beneficial.

3.2.6 The G Amendment

The IEEE 802.15.4g amendment introduces the concept of smart metering utility net-
works, SUN. SUNs enable multiple applications to operate over shared network re-
sources, providing monitoring and control of a utility system. SUN devices are designed
to operate in very large-scale, low-power wireless applications and often require using
the maximum power available under applicable regulations, in order to provide long-
range, point-to-point connections. Frequently, SUNs are required to cover geographi-
cally widespread areas containing a large number of outdoor devices. In these cases,
SUN devices may employ mesh or peer-to-peer multi-hop techniques to communicate
with an access point.

The amendment introduces three new PHYs especially suited for SUN applications,
like multi-rate and multi-regional frequency shift keying MR-FSK, the multi-rate and
multi-regional offset quadrature phase-shift keying MR-O-QPSK and the multi-rate and
multi-regional orthogonal frequency division multiplexing MR-OFDM. In addition par-
ticular modifications are made on both PHY level and the MAC level for supporting

3.3. 6LOWPAN 29

a mode switching mechanisms. The mode switch mechanism enables a device using
the MR-FSK PHY to change its symbol rate and/or modulation scheme on a packet-
by-packet basis. This is done as a PHY layer operation, requiring minimal involvement
from the MAC layer. A specific mode switch packet is used to inform the receiver of the
mode switch and specifies the new PHY mode of the following packets. As an example,
this methodology can be used by a device that is configured to operate at the MR-FSK
mode with a lower data rate (e.g., 50 kb/s) to enable higher data rate communications
when needed. Another mechanisms imported, useful for mitigating interference, is the
multi-PHY management (MPM). The MPM scheme facilitates interoperability and
negotiation among potential coordinators with different PHYs by permitting a potential
coordinator to detect an operating network during its discovery phase using the common
signaling mode appropriate to the band being used. Important to note that the 802.15.4g
MR-FSK packet definition extends the maximum packet length from 127 bytes to 2047
bytes, thus permitting IP packets without fragmentation.

3.3 6LoWPAN

As we saw in the previous section, services provided by the IEEE 802.15.4 MAC layer
are not enough for realizing complex and autonomous networks of smart objects. Even
a good medium access control policy, which carefully uses only necessary resources and
permit to talk with very simple hardware, has to be extended if we want to build a
global public network with sensing and actuating capabilities toward the real world.

It is widely known that the actual IPv4 deployed infrastructure imposes some limita-
tions. In fact, Internet has been an incredible advancement in the last information-centric
period of human history and technologies like WWW, email and cloud services could not
have existed, but stretching this already loaded infrastructure for connecting a tremen-
dous amount of new heterogeneous devices, has shown some holes in the original design.
IPv6, developed by the Internet Engineering Task Force, was born mainly to prevent
IPv4 address exhaustion. This new standard represents network addresses with 128 bits,
theoretically allowing 3.4× 1038 different addresses. With 128 bits IPv6 can surpass the
IPv4’s address capability, of 4.3 billion addresses, by an immense amount. IPv6 provides
other technical benefits in addition to a larger addressing space. In particular, it per-
mits hierarchical address allocation methods that facilitate route aggregation across the
Internet, and thus limit the expansion of routing tables. The use of multicast address-
ing is expanded and simplified, and provides additional optimization for the delivery of
services. The standards addresses thematics that have pertinance to device mobility,
security and configuration aspects. Another more recently development by IEFT is the
important 6LoWPAN working group, which concluded in 2014. The specific goal was
to propose RFCs about porting the newer IPv6 on low rate personal area networks.
Among its publications there are two documents that reason about problematics and
give a specification for the introduction of the network concept on Lo-WPAN. Given the
fact that its adoption seems imminent, it is certainly a good idea to reason about IoT
solutions in terms of an important network protocol update.

30 CHAPTER 3. PROTOCOLS DESCRIPTION

In this section we firstly explain what are the benefits of enabling IP, second why it could
be problematic to have network protocols running on IEEE 802.15.4 devices, which are
usually short range, low bit rate, low power and equipped with very limited compu-
tational power. Finally, a short overview of the adaptation layer for IPv6 over IEEE
802.15.4.

3.3.1 Benefits

Configuring and managing computer networks is not a trivial task, especially when this
practice regards area networks which are composed of a multitude of heterogeneous de-
vices that can potentially scale to a huge number. Further, reasoning in the direction
of connecting this local area network to a global one can only complicate the job. How-
ever, extracting more value from an installation must be evaluated as well, since, from
the economical point of view, a business may strongly benefit from wider connecting
possibilities.

The application of IP technology is assumed to provide the following benefits:

• The pervasive nature of IP networks allows use of existing infrastructure. A lot of
indexing capability, for example, are at disposal.

• IP-based technologies already exist, are well-known, and proven to be working.

• IP networking technology is specified in open and freely available specifications,
which is favorable or at least able to be better understood by a wider audience
than proprietary solutions.

• Tools for diagnostics, management, and commissioning of IP networks already
exist.

• IP-based devices can be connected readily to other IP-based networks, without the
need for intermediate entities like translation gateways or proxies.

• The many devices in a LoWPAN make network auto configuration and statelessness
highly desirable. And for this, IPv6 has ready solutions

• The large number of devices poses the need for a large address space, well met by
IPv6.

• Given the limited packet size of LoWPANs, the IPv6 address format allows sub-
suming of IEEE 802.15.4 addresses if so desired.

3.3.2 Adaptation Layer

Before explaining the adaptation layer we want to reason on several problematics that
IEEE 802.15.4 smart object networks have. These can be summarized as follows.

3.3. 6LOWPAN 31

• Topologies considered by the IEEE 802.15.4 protocol are mesh and star. This
implies difficulties for the routing protocol since the packet size is very small.
The routing overhead should be kept at a minimum, the computing and memory
requirements are very constrained and in certain networks there could be devices
in a temporary sleep state.

• Limited packet size. Even though applications within LoWPANs are expected to
originate small packets, adding all layers for IP connectivity could make impossible
the transfer of all the upper layer data into one data link frame. Also, the new
amendment IEEE 802.15.4g permits packets with length up to 2047 bytes but for
other PHYs that have to remain 127 bytes long, a fragmentation and reassembly
layer is probably unavoidable.

• Limited configuration and management. Devices within LoWPANs are expected to
be deployed in exceedingly large numbers and the location of some of these devices
may be hard to reach. Thus network management should have little overhead, yet
be powerful enough to control dense deployment of devices.

The RFC 4944 Transmission of IPv6 Packets over IEEE 802.15.4 Networks addresses
these problematics.

Transmission Mode

The first thematic regards the transmission mode of IEEE 802.15.4, particularly beacon
enabled and non-beacon enabled transmissions. The adaptation layer does not impose
any particular requirement on which mode to use, the only services that has to be
exported to upper protocols is the capability that beacons can aid in association and
disassociation events. This way the IP layer can better handle network attachment.

Addressing Scheme

Also, considerations regulating the addressing scheme must be provided. The two ad-
dressing modes natively provided by the MAC layer are both at disposal. Instead, talking
of multicast messages, which are not provided by default at the MAC layer, a particular
assumption is considering that a single PAN maps directly to a IPv6 link. The correction
is simply to translate a multicast on the local link as directed to the 0xffff address, the
broadcast address at the MAC layer. This way the network is capable of multicasting
on an entire IPv6 link, which is actually a broadcast for the data link layer.

Maximum Transmission Unit

The next important problem is that of the maximum transmission unit. The MTU size
for IPv6 packets over IEEE 802.15.4 is 1280 octets. However, a full IPv6 packet does not
fit in an IEEE 802.15.4 frame. 802.15.4 protocol data units have different sizes depending
on how much overhead is present. Starting from a maximum physical layer packet size
of 127 octets and subtracting the header part the resultant maximum frame size at

32 CHAPTER 3. PROTOCOLS DESCRIPTION

the media access control layer is 102 octets. Link-layer security may imposes further
overhead, which in the maximum case (21 octets of overhead in the AES-CCM-128 case,
versus 9 and 13 for AES-CCM-32 and AES-CCM-64, respectively) leaves only 81 octets
available. This is obviously far below the minimum IPv6 packet size of 1280 octets and a
fragmentation and reassembly adaptation layer must be provided at the layer below IP.
Furthermore, since the IPv6 header is 40 octets long, this leaves only 41 octets for upper-
layer protocols, like UDP. The latter uses 8 octets in the header which leaves only 33
octets for application data. Without going into details, the adaptation provided is that
the particular fragmentation mechanism constructs a particular stack based header which
has to prefix each datagrams generated by the network layer. Moreover, the standards
defines a header compression mechanism and a format for efficiently obtaining an IPv6
interface identifier from the address setting of the underlying layer, in a stateless manner.

Chapter 4

Linux Architecture

Recently, the operating systems scenario has slightly changed in respect of the embedded
world. The kind of software we are able to run on a typical hardware architecture
today, some years ago was very difficult to efficiently use or even impossible to execute.
The typical machine that was widely used did not implement special interesting and
practically useful features, like different execution modes, memory management or full
interrupt support, instead commonly found in PC architectures. But, as we explain
in Chapter 5, the situation is now completely different and a lot of different system-
on-chips are capable of running full featured operating systems. In previous chapters
we have already outlined some aspects of using an operating system for developing
IoT networks and, besides giving a large suite of abstractions, the operating systems
can serve as a fundamental tool for the development process and for the support of a
wide set of different devices. The Linux operating system, as an open source software
product, is very good in these features, because of the huge community is helping in its
development, the system is extremely configurable and support and incredible amount
of different machine architectures and devices.

In this chapter we present an overview of some distinctive characteristics of this
open source operating system. In particular we illustrate some high level interfaces, the
methods the community uses to advance this huge piece of software and some benefits in
having the own software included in the main line of the community development pro-
cess. An important point we want to stress is the support provided for developing driver
code. This fact turns out to be very useful for adapting the kernel to own particular
hardware. As explained in following chapters, about the driver development, one person
can take advantage of a well designed and very general architecture and can make use of
an extensive set of different subsystems that handle common hardware characteristics.
In this chapter we want to explain the module system and the driver model framework.
Given the fact this thesis is about network protocols, we provide a quite detailed ex-
planation of the network subsystem, showing the Linux’s capability of configuring the
network stack extensively. Aside from a classic BSD-style socket interface, the kernel
internally permits to efficiently manage network traffic by routing packets throughout
different network protocol driver and exposes an interface for managing network virtual

33

34 CHAPTER 4. LINUX ARCHITECTURE

devices in an advanced manner.

Finally, we expose some considerations regarding the employing of Linux in embed-
ded applications, which is turning into an important reality these days as this extremely
configurable operating system permits to implement valuable abstractions even for mod-
ern hardware architectures. In fact, the adaptability of Linux for the incredible amount
of heterogeneous hardware systems, like system-on-chip and the more recently system-
on-module style for embedded platforms, is showing a possible future for this community
developed kernel, as it is supporting more and more chips every day.

4.1 Overview and General Concepts

Linux embed in its original philosophy the fact of being a system for writing software,
inheriting this attitude from the classical Unix, and has always been oriented toward the
principles of multiprogramming: many programs are permitted to run simultaneously,
and multiuser: several users can access system resources at the same time. Simplicity,
elegance and consistency are some of the qualities of a Linux system and the most
important guideline is that every program in the system should implement only one
thing and do it well. Technically speaking Linux is a monolithic kernel where the system
call interface is quite extended and lot of functionality, such as virtual consoles, network
configuration and routing, and much of the inter process communication facilities are
built directly into the kernel itself. Talking about Linux as an operating system or a
kernel is pretty equivalent, indeed. In the following, after a brief historical overview,
we illustrate Linux’s features by analyzing principal abstractions an operating system
usually provide: processes, memory and I/O.

4.1.1 Origins

Linux started in 1991 as a personal project of Linus Torvalds, a young Finnish researcher,
who believed it was the right time to start writing a new operating system from scratch.
This new project attracted a lot of people and in few years, when the version reached
1.0, in 1994, the code base was already counting 165000 lines and a lot of interesting
features, such as a full new file system, memory mapped files and a networking system
with BSD-like socket interface, were already implemented. Linux is widely known as
Unix clone. Unix was a new concept of operating system design, developed together with
the C programming language at Bell Labs. The first paper about Unix was published
by Ritchie and Thompson in 1974. In the following years a lot of new versions were
published and more and more departments adopted this software as operating systems
for their computers. As in the initial years the license included the source code, different
companies and universities modified it. Two famous versions were System V from AT&T
and BSD from Berkeley University. What inspired Torvalds in writing his new version
was Minix, a small microkernel born in mid-80s with stability and easy to understand
characteristics as design goals that tries to respect the Unix design philosophy. One
of the famous reasons for the expansion of Linux over Minix was that the former was

4.1. OVERVIEW AND GENERAL CONCEPTS 35

willing to accept new features whether the latter was more conservative in order to keep
things simple.

4.1.2 Abstractions

When computers reached a point where their hardware turned into a mix of sophisti-
cated components, such as processors, memories, disks, I/O devices, having a manager
that simplifies some operations, truly take advantage of underlying features, and pro-
vide the user with powerful abstractions became a priority in software systems design.
An operating system is a piece of software that can be interpreted as a resource su-
pervisor and regulate all operations happening in the machine. Base concepts that are
usually implemented in an operating system includes: processes, virtual memory, files,
input/output, protection and the shell. These features are implemented with a powerful
mechanism called system call that is used to “trap” the guest activity for making the
supervisor intervene and regulate the use of resources.

Processes

Processes in Linux follow the Unix specification, with some differences. Through the
fork system call a process can duplicate its resources and generate a child process. The
new process can execute a different executable by issuing the exec system call. Inter
process communication is achieved with so called pipe, a communication channel where
a process writes a stream of bytes and the other reads it, and with the concept of
signals, that are more massage-passing based. A particular characteristic of Linux is
how it organizes the process descriptors information. In fact the task struct represents
all kind of executing context and so if a process is multithreaded a single task struct is
present for each of them. This peculiarity gives a lot of granularity for the management of
resources linked with processes. This structure contains a lot of informations which may
fall under this categories: scheduling parameter, pointers to memory image segments,
masks for signals, machine registers, system calls state, file descriptor table and general
accounting. A mechanism worth noting is the copy on write that lets the kernel
quickly allocate resources when a new process is started. The allocation actually starts
when the process modifies this resources for its needs, for example it writes a new text
image upon an exec. Another important characteristic concerning process creation is
the introduction of the clone system call. This function permits to fully specify which
resources are shared between a thread and other threads of the same process, so to
achieve a fine granularity that allows to share only what is really needed and to be quick
in allocation of new threads-related resources. Regarding scheduling of processes, Linux
organizes scheduling by partitioning run queues in three classes, two more oriented to real
time latencies: real-time FIFO not preemptable and real-time round-robin instead
preemptable. The other class, called SCHED OTHER is handled by the Completely
Fair Scheduler (CFS) that has recently been introduced. CFS basically models an “ideal,
precise multi-tasking CPU” on real hardware, which equally divide the computing power
among tasks in execution.

36 CHAPTER 4. LINUX ARCHITECTURE

Memory

Figure 4.1: Linux memory mapping and organization

Linux organizes process memory, as other Unices, with the concept of segments.
This way, every memory space is partitioned into three segments, text : holding program
instructions, data : that is divided in static data and uninitialized data (BSS), stack :
which keeps track of procedure contexts. The last two memory segments are organized
as in Figure 4.1. Stack and BSS are expected to grow and the kernel manages this by
incrementing each segment in the opposite direction, the stack grows downward and
the BSS upward. Two important system calls for memory allocation are brk, which
asks the kernel to augment the data segment and mmap that implements the powerful
mechanism of memory mapped files where the content of a file can be mapped directly
in the address space of the process. Linux handles pagination by dividing the memory
into three zones: ZONE DMA, ZONE NORMAL and ZONE HIGHMEM. To
these different classes corresponds different pagination policies for differentiate memory
allocation algorithms, and are respectively: pages for DMA use, normal mapped pages
for use by process and memory zones where the mapping is not performed continuously.

4.1. OVERVIEW AND GENERAL CONCEPTS 37

Input Output

Beside normal filesystem operation, the I/O management in Linux follows the important
concept of representing device operations in the same way of file operations, as other
Unix systems do. This way common devices appear in the file system under /dev/ and
are of two types: block devices and char devices. The distinction is made to permit
two different access types, one that is more suitable for disk-like devices and the other
for streams of bytes. Another important I/O kind of operation is the one given by
the socket interface for networking operations. Aside from being represented by file
descriptors, the inner working of sockets is quite different for the intrinsic asynchronous
nature of the network. Sockets can be represent network traffic of different type:

• bytes stream with reliable connection

• packets with reliable connection

• packets without reliable connection

Important input/output related system calls are: open, write, read, close, ioctl.
These permit classic interaction with normal files and special files for device operation.
For network operations, instead, one can use socket, listen and connect.

Configuration and Modules

The configuration and build method of Linux is very effective and permits to include in
the final image only desired features. This is possible because the build process which is
based on the famous GNU make utility can understand, as declared in Kconfig, what
components of the system are necessary for a specific feature and include them in the
final binary. This utility regards the choice of the underlying machine architecture, driver
support, filesystems, graphics, debug/development facilities and some internal advance
feature like cgroups. Being able to specify such feature allows to obtain a system that
is small and boot fast. Another important characteristic of the Linux kernel is that
it supports loadable kernel modules. Previously one had to include necessary features
during the configuration and build process. This process presents some inflexibility as
one have to foresee exactly what features the system has to include and because some
machines varies physical configuration dynamically, as for example when an USB stick
is plugged in or when a network bootstrap is performed. With this feature Linux can
load big piece of code dynamically, for example device driver, entire filesystems, network
protocols and auditing and monitoring components. To load a module dynamically the
user can use the modprobe command that automatically call the right system call
Linux made available for this service. The loading operation is quite complex: first the
module need to be reallocated on the fly, second the system has to check dependencies
and acquire them, then setup various interrupt related entries and allocate device major
and minor number.

38 CHAPTER 4. LINUX ARCHITECTURE

4.1.3 Community

Given the fact that the Linux kernel has grown incredibly over the years, the community
follows some particular methodologies for advancing the code base. The approach of the
community is to keep track of different git repositories, each maintaining a particular
version of the system in a particular state. In order to integrate some changes into
the kernel, a person have to fully understand how various repositories are connected,
especially because the development process advances at a rapid pace.

mainline This is the process by which new features are introduced into the kernel. As
soon as a new kernel is released a two weeks window is open, during this period
of time maintainers can submit big diffs directly to Linus in order to integrate
changes in various subsystems into the mainline. After two weeks a -rc1 kernel is
released it is now possible to push only patches that do not include new features
that could affect the stability of the whole kernel. The process finishes when the
perceived bug-level status is quite below a given threshold.

stable The stable repositories are usually composed of three numbers, as in 4.x.y. The
x is the major referring to kernel version, while y the others are critical fixes for
security problems or regressions discovered after the release. This is the option a
user has to choose to get to most stable version of the kernel.

subsystem specific Linux is divided in a lot of subsystems, for example: networking,
filesystems, graphics, etc. Each subsystem is associated with a mailing list where
discussions about problematics are conducted and patches with code modifications
are reviewed.

next This repository gives the opportunity to integrate modifications that will be ex-
pected to go into the mainline at the next release, so this is the place where most
advanced development occurs.

4.2 Driver Model

In this section we explain one of the most important architectural features of Linux.
The Linux Kernel Driver Model is a unification of all the disparate driver models that
were previously used in the kernel. It is intended to augment the bus-specific drivers for
bridges and devices by consolidating a set of data and operations into globally accessible
data structures, thus providing a common logic for the management of device resources
and for the problem of matching a driver to the specific device found on a generic bus.
The current driver model provides a common, uniform data model for describing a bus
and the devices that can appear under the bus. The unified bus model includes a set of
common attributes which all busses carry, and a set of common callbacks, such as device
discovery during bus probing, bus shutdown, bus power management, etc.

To give an indication of how this generalization is achieved in the kernel source code
consider the following fragment:

4.3. NETWORK SUBSYSTEM 39

struct pci_dev {

...

struct device dev; /* Generic device interface */

...

};

This way each device dedicated to a specific purpose has its own data structure but
also embed general information with the struct device dev inner declaration, thus
common code can behave with the same logic by accessing the substructure fields that
are present in each device in the kernel. This method resemble a simple object oriented
programming style. Important concepts of this architecture are:

bus Each bus has to implement a particular a set of callback to adhere to the model,
as matching device to drivers or exporting attributes to other common interfaces,
such sysfs. These are set up during registration.

binding When a new device is added, the bus’s list of drivers is iterated over to find
one that supports it. In order to determine that, the device ID of the device must
match one of the device IDs that the driver supports. The format and semantics
for comparing IDs is bus-specific.

class Each device class defines a set of semantics and a programming interface that
devices of that class adhere to. Device drivers are the implementation of that
programming interface for a particular device on a particular bus.

devres Devres is a common infrastructure to provide support for handling resources
allocated by drivers. This system can automatically understand which features
a driver needs and deallocate upon unregistering. Managed resources are clock,
dma, gpio, irq and memory allocation.

4.3 Network Subsystem

As previously explained the Linux kernel is a monolithic software system that creates a
clear barrier between supervisor code and user code, and a lot of features are provided
behind this interface. In order to be so sharply defined the system has to expose good
configuration methods that can permit user code to tune some inner working mechanism
to his/her needs. This is the case of the networking subsystem, which provides the
implementation of a lot of protocols, as TCP/IP for instance, a routing mechanisms
with features commonly found in a typical hardware router and a full suite of drivers
for network devices. Furthermore, in order to configure this complex stack of software
the Linux networking subsystem offers a socket base interface that is very general and
powerful, capable of providing the user with access to inner interface configuration and
events.

40 CHAPTER 4. LINUX ARCHITECTURE

4.3.1 Netlink

Technically speaking netlink is a Linux kernel interface used for inter-process commu-
nication (IPC) between both the kernel and userspace processes, and between different
userspace processes, in a way similar to the Unix domain sockets. Similarly to the Unix
domain sockets, and unlike INET sockets, netlink communication cannot traverse host
boundaries. However, while the Unix domain sockets use the file system namespace,
netlink processes are addressed by process identifiers. This interface is extremely pow-
erful to permit a total configuration of the network stack. Without going into details, it
is possible to intercept packets and forward them to specific handlers for implementing
filter, firewalls and special signaling protocols. In simple terms netlink permits to manu-
ally exchange sockets traffic, bound to specific protocols, between kernel space and user
space.

The interface can be used with classic sockets interface

#include <asm/types.h>

#include <sys/socket.h>

#include <linux/netlink.h>

netlink_socket = socket(AF_NETLINK, socket_type, netlink_family);

The netlink family parameter selects the kernel module or netlink group to commu-
nicate with. The following shows some of these modules.

NETLINK ROUTE Receives routing and link updates and may be used to modify
the routing tables (both IPv4 and IPv6), IP addresses, link parameters, neighbor
setups, queueing disciplines, traffic classes and packet classifiers.

NETLINK FIREWALL Transport IPv4 packets from netfilter to user space. This
can be used to intercept and filter inbound or outbound traffic.

NETLINK AUDIT Auditing services.

NETLINK CONNECTOR Recent netlink simplified user space and kernel space
communication module. The Connector driver makes it easy to connect various
agents using a netlink based network. One must register a callback and an iden-
tifier. When the driver receives a special netlink message with the appropriate
identifier, the appropriate callback will be called.

NETLINK NETFILTER A framework that allows various operations to be imple-
mented in the form of customized handlers. It offers various functions and opera-
tions for packet filtering, network address translation, and port translation.

NETLINK GENERIC Generic netlink family for simplified netlink usage.

4.4. LINUX KERNEL FOR EMBEDDED PLATFORMS 41

4.3.2 Netdevice

Netdevices are another important example of the philosophy of Linux. Being physical
network-related devices usually made with similar characteristics, the kernel has main-
tained this interface which permits to reuse a good amount of code by incorporating
common parts into a single layer. There is also a special API to help setting up features
a device can switch on when some events occur. Features regards hardware checksum-
ming, TCP related segmentation and scatter-gather accelerations. The following gives
an overview of the support provided by the kernel. The subsystem partitions each feature
in different classes:

• netdev->hw features set contains features whose state may possibly be changed
(enabled or disabled) for a particular device by user’s request.

• netdev->features set contains features which are currently enabled for a device.
This should be changed only by network core.

• netdev->vlan features set contains features whose state is inherited by child
VLAN devices. This is currently used for all VLAN devices whether tags are
stripped or inserted in hardware or software.

• netdev->wanted features set contains feature set requested by user. This set is
filtered by ndo fix features callback whenever it or some device-specific conditions
change. This set is internal to networking core and should not be referenced in
drivers.

4.4 Linux Kernel for Embedded Platforms

Linux is an operating system capable of running on an extensive list of machine archi-
tectures. To give a short list, we outline only the most common: Alpha, Atmel AVR32,
Texas Instruments TMS320, Qualcomm Hexagon, IBM Power, Intel x86 and x86-64,
Sparc and of course ARM. We can think about this good support as one of the benefits
of being an open source operating system. In fact, a machine vendor who has already
developed a new architecture understand that porting Linux on his/her machine could
be a good investment. Given the fact that the whole code base is at disposal and the
community is very strong and consolidated, the porting process should not be an expen-
sive task, at least in recent years as many tools are mature and Linux itself has been
evolved to be extremely adaptable to a wide scenario. In return, offering a machine with
the capability of running an operating system that has become widespread, could only
increase the final value. This situation well depicts the scenario of embedded systems
where different manufacturers are taking part in the Linux development. Such progress is
having an incredible positive effect in developing software for embedded systems, which
was previously quite complex as many framework fitted only few machines and a com-
pany had to build from scratch many of the tools. With the wide adoption of Linux,
making it runs on a new system is no more a matter for only experts. In this section we

42 CHAPTER 4. LINUX ARCHITECTURE

want to illustrate some of the concepts that explain why it is possible to run a kernel
originally conceived for servers and workstations on a small machine. We introduce the
U-Boot bootloader as it is a common choice and because we used it in our development.

4.4.1 Bootloader

One of the most important steps in bootstrapping an operating system on a machine is
the loading process. Right after the power on sequence a machine need to be properly
configured in order to load a kernel image, which is usually made up of some mega bytes
of data and resides in some memory that is not usually directly accessible by the CPU.
This is also true in embedded systems where the image is flashed in NAND memories or
has to be transferred from the local network. So, there is the need of an initialization
step that is capable of setting up the machine right after power on, retrieving the binary
image of the kernel, extracting it in the right place and that correctly implements the
boot protocol, which is about composed of: passing command line parameters in the
right location, organizing the memory layout and setting the right execution context.

A widely used bootloader for embedded application is U-Boot which is a very useful
tool that runs on PowerPC, ARM and MIPS systems. Besides implementing the Linux
booting protocol U-Boot supports a lot of hardware, has a quite comfortable command
line, scripting capability, support communications over serial link and is able to boot
from different mediums. This environment is very small but invaluable since it aids in
the process of porting more complex operating systems. In fact, this reflects a very
important difference between embedded systems and PC, where the start up sequence
has been dictated by big companies and has remained pretty the same for many years.
We list some useful features of this bootloader:

Information that retrieve basic information on the hardware system as discovered by
U-Boot

Memory that access the main memory for displaying or modifying

Flash Memory to copy or erase flash memories

Download Command such as bootp for booting via network, loadb for loading a
binary over serial line

Flattened Device Tree Support that manages an important data structure for de-
scribing hardware configurations

4.4.2 Device Tree

Device tree is a recent concept that has been diffusing among embedded operating sys-
tems during last years. The main objective of the device tree is to represent an hardware
configuration. It is a format for describing which device is connected to the CPU, what
kind of controller the machines is equipped with and, even more essential, the interrupt
disposition and the memory regions, and passing such information to the kernel. This

4.4. LINUX KERNEL FOR EMBEDDED PLATFORMS 43

way the software can be very well parametric and adapt to different configurations. It
is derived from the device tree format used by Open Firmware to encapsulate platform
information. The device tree data is typically created and maintained in a human read-
able format in .dts source files and .dtsi source include files, but is then compiled into a
binary format contained in a .dtb blob file, also called FDT. The Linux operating system
uses the device tree data to find and register the devices in the system. The FDT is
accessed in the raw form during the very early phases of boot, but is expanded into a
kernel internal data structure for more efficient access for later phases of the boot and
after the system has completed booting. A device tree is represented as a tree structure
where each node possesses a list of attributes. Here is an example

soc {

compatible = "nvidia,tegra20-soc", "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

ranges;

intc: interrupt-controller@50041000 {

compatible = "nvidia,tegra20-gic";

interrupt-controller;

#interrupt-cells = <1>;

reg = <0x50041000 0x1000>, < 0x50040100 0x0100 >;

};

i2c@7000c000 {

compatible = "nvidia,tegra20-i2c";

#address-cells = <1>;

#size-cells = <0>;

reg = <0x7000c000 0x100>;

interrupts = <70>;

wm8903: codec@1a {

compatible = "wlf,wm8903";

reg = <0x1a>;

interrupts = <347>;

};

};

};

In the listing we can see some features of this language. Each node is declared with the
syntax

label: name @ address

The label is for referencing or alias and the address for specifying the memory location.
The kernel during the booting process parses this structure and tries to understand the

44 CHAPTER 4. LINUX ARCHITECTURE

content. The attribute compatible serves to indicate the model of the device, permitting
the kernel to search for drivers supporting that specific device. Other attributes are
always parameter to pass to the driver, such as register locations or interrupt values.

4.4.3 Architecture Specifics

The last comment regards machine specific code that is included into the Linux kernel,
usually under arch/arm/mach-*. If a person is interested in porting to a new machine
is probable that he/she will have to write some low level ad-hoc code. Linux, indeed,
even if it is very general and a lot of maintainer fight the battle of code reuse and
maintainability, some details remain and have to be fixed. A particular machine can
have specific instructions, timers, busses, can require cpu and memory initialization,
the interrupt handling system may have some peculiarities and, further, there could
be specific hardware designed to solve important problems, such as integrated power
manager and IO multiplexers. Linux provides the developer with hooks that are called
at some stage of the loading process or can establish an interface the kernel uses for
certain operations, for example when the system needs to go in idle state the kernel
should call the architecture specific hook for that purpose.

Chapter 5

Hardware Description

What is referred to with the term embedded system is a computer system with a dedicated
function within a larger mechanical or electrical system, often with real-time computing
constraints. An embedded system is designed to do some specific task, rather than be a
general-purpose computer for multiple tasks. This characteristic have made embedded
system architectures fundamentally different from personal computer, workstations or
server. This is due to the fact that an embedded hardware system had to be designed
specifically for the final purpose and, some time ago, putting a lot of complexity and
additional features could have caused high development costs, high configuration costs
and difficulties in writing software for that specific architecture. But the situation is now
different. Advancements in machines development process, as modern tools for design-
ing digital circuits that can automatically optimize low level components configuration
or even identify some bugs in the design, has certainly raised the total process perfor-
mances giving to hardware manufacturers the possibility of shipping full-featured digital
components. One trend that supports this evolution is digital circuit integration technol-
ogy that is frequently producing new solutions, such as microcontroller, system-on-chip
and the more recently system-on-module. Those are advancements toward manufactur-
ing costs reduction and the production of smaller systems. Since embedded system are
dedicated to specific tasks, designers can optimize it to reduce the size and cost of the
product and increase the reliability and performance.

Among wide use architectures, nowadays we have seen the expansion of the ARM
technology. This kind of machines has increasingly become very common and has started
to compete with PC predominant counterparts like Intel x86. And most important, even
if ARM systems are almost exclusively used for embedded applications, in general they
tend to provide a whole set of modern features: accelerated graphical applications,
hardware virtualization and multicores that scales up to 8 core, all of this with low
power consumption performances. Those systems range from portable devices such as
digital watches and MP3 players, factory controllers, and largely complex systems like
hybrid vehicles, MRI, and avionics. It is clear that this technology will play an important
role for the expansion of IoT. This chapter is dedicated to illustrate the development
hardware we used for practical experiments. We first present the AMBER platform and

45

46 CHAPTER 5. HARDWARE DESCRIPTION

show some advanced characteristics of this modern-style development system. Second,
we give some details on the transceiver CC1200 by Texas Instruments that is very well
suited for smart utility networks.

5.1 The AMBER Platform

Amber is a new open platform designed to be a scalable and flexible general purpose
gateway and test platform for any new IoT activity: both hardware and/or software. It
is an open platform in the sense that all design documents are at disposal and covered
by a Creative Commons license. The platform is very flexible as it permits to install
the SOM of choice with a SO-DIMM 200-pin connector. Even if at the moment the
Variscite VAR-SOM-MX6 module is the only fully supported by the board, integrating
another 200 pins SOM should be a very small effort. Another important characteristic
is that the system make accessible all internal ports on the SOM by exporting them on
useful connectors on the board, such as mini-PCIe. This way there is a wide availability
of signals: SPI, I2C, UART, USB, GPIO, PWM and CAN. Other features are:

Video Many video outputs can be populated for external video out: LVDS, HDMI,
RGB. Video-in interface is present on Amber board through an FCI 40 pins con-
nector where both MIPI-CSI and MIPI-DSI are present. When required, Amber
can operate with up to 3 displays at the same time.

Connectivity An USIM card slot and a 1 Gigabit LAN connector are on board. Wire-
less and Bluetooth / BLE connectivity are directly integrated in the SOM board.
Other wireless connections like ZigBee, ISA100.11a, WirelessHART, MiWi or
beyond, have to be realized with an extender, as we did for integrating IEEE
802.15.4g into this board.

Touch screen Both resistive and capacitive ports are available for a touch panel, SoM
must have the feature.

Audio as well is present with two 3.5 mm standard connectors for line-in stereo and
line-out stereo. An on board MIC is also present.

5.2 Texas Instruments CC1200

A transceiver is a device comprising both a transmitter and a receiver which are combined
and share common circuitry or a single housing. This kind of system has been widely used
in embedded applications. The fact of reusing some components permits to integrate
advanced functionality, especially in modern integrated radio circuits, where there is the
need of low power modes, for instance. Together with a computing processor, capable
of driving and taking advantage of all the implemented features, these radio systems
are the essential parts for building modern IoT devices. Meeting the most stringent RF
requirements in the market, the Texas Instruments RF performance line family has the

5.2. TEXAS INSTRUMENTS CC1200 47

most reliable range in the industry. A good range is achieved by high output power
and excellent sensitivity. The RF performance line family can be in closer proximity
to the other RF systems and potential interfere without any disturbance to the RF
link. The RF familys advanced RF channel sniff mode feature ensures quick startup
and settling time, and enables a current consumption of sub-3 mA in sniff mode. The
sniff mode allows systems to listen for RF packets using very low power consumption
while maintaining full RF performance. Ideally suited for low-power, high-performance
systems, the CC1200 RF transceiver offers a data rate up to 1 Mbps and years of life
for battery-powered applications through low-power operation with sniff modes and fast
settling time. The CC1200 supports all the IEEE 802.15.4g FSK modes with hardware
packet handling as well as hardware AES security support and all wM-Bus modes with
great performance.

5.2.1 Summary of Characteristics

We present a brief list of principal technical features directly extracted from the datasheet
in order to give an overview. In the following, we provide an explanation of some
radio terminology to help the reader to better understand some concepts, and a deeper
explanation of the digital features.

RF Performance and Analog Features

• Excellent Receiver Sensitivity: 109 dBm at 50 kbps

• Blocking Performance: 86 dB at 10 MHz

• Adjacent Channel Selectivity: Up to 60 dB at 12.5-kHz Offset

• Very Low Phase Noise: 114 dBc/Hz at 10-kHz Offset (169 MHz)

• Programmable Output Power Up

• Supported Modulation Formats: 2-FSK, 2-GFSK, 4-FSK, 4-GFSK, MSK,
OOK

• Supports Data Rate Up to 1.25 Mbps in Transmit and Receive

Low Current Consumption

• Enhanced Wake-On-Radio (eWOR) Functionality for Automatic Low-Power
Receive Polling

• Power Down: 0.12 A (0.5 A With eWOR Timer Active)

Digital Features

• WaveMatch: Advanced Digital Signal Processing for Improved Sync Detect
Performance

• Security: Hardware AES128 Accelerator

• Data FIFOs: Separate 128-Byte RX and TX

48 CHAPTER 5. HARDWARE DESCRIPTION

• Includes Functions for Antenna Diversity Support

• Support for Retransmission

• Support for Auto-Acknowledge of Received Packets

• Automatic Clear Channel Assessment for Listen-Before-Talk Systems

Dedicated Packet Handling for 802.15.4g

• CRC 16/32

• FEC, Dual Sync Detection (FEC and non-FEC Packets)

• Whitening

5.2.2 Radio Communication Terminology

Receiver Sensitivity Range is an important requirement for most any RF applica-
tion. Communication system achieve long range with modulation and demodu-
lation techniques coupled with good receivers sensitivity specifications. Receiver
sensitivity is the lowest power level at which the receiver can detect an RF signal
and demodulate data. Sensitivity is purely a receiver specification and is indepen-
dent of the transmitter. As the signal propagates away from the transmitter, the
power density of the signal decreases, making it more difficult for a receiver to de-
tect the signal as the distance increases. Improving the sensitivity on the receiver
will allow the radio to detect weaker signals, and can dramatically increase the
transmission range. Sensitivity is vitally important in the decision making process
since even slight differences in sensitivity can account for large variations in the
range.

Receiver Blocking Performance When a very strong off channel signal appears at
the input to a receiver it is often found that the sensitivity is reduced. The effect
arises because the front end amplifiers run into compression as a result of the off
channel signal. This often arises when a receiver and transmitter are run from the
same site and the transmitter signal is exceedingly strong. When this occurs it has
the effect of suppressing all the other signals trying to pass through the amplifier,
giving the effect of a reduction in gain. Blocking is generally specified as the level
of the unwanted signal at a given offset - often 20 kHz - which will give a 3 dB
reduction in gain. Dependent upon the type of receiver, the values for blocking
will vary considerably. As a reference point, a good communications style receiver
may be able to withstand signals of about 10 dBm before this happens.

Adjacent Channel Selectivity Adjacent Channel Selectivity ACS is a measure of a
receivers ability to receive a signal at its assigned channel frequency in the presence
of a strong signal in the adjacent channel. ACS is defined as the ratio of the
receiver filter attenuation on the assigned channel frequency to the receiver filter
attenuation on the adjacent channel frequency.

5.2. TEXAS INSTRUMENTS CC1200 49

Phase Noise Phase noise occurs when a system introduces disturbances in the phase of
signals produced, implicating a considerable amount of undesired spectral compo-
nents to arise nearby the main carrier. This phenomenon may involve difficulties
in separating the wanted frequency component from signals close to it, so it has
to be taken into account especially for narrow band application. It is measured in
dBc/Hz, where dBc (decibels relative to the carrier) is given by the power ratio
of a signal to a carrier signal, thus providing information on the robustness of the
system to interfering frequencies present near the channel.

Link Budget A link budget is accounting of all of the gains and losses from the trans-
mitter, through the medium (free space, cable, waveguide, fiber, etc.) to the
receiver in a telecommunication system. It accounts for the attenuation of the
transmitted signal due to propagation, as well as the antenna gains, feedline and
miscellaneous losses.

A link budget equation including all these effects, expressed logarithmically, might
look like this:

PRX = PTX + GTX − LTX − LFS − LM + GRX − LRX

where:

PRX = received power (dBm)

PTX = transmitter output power (dBm)

GTX = transmitter antenna gain (dBi)

LTX = transmitter losses (coax, connectors...) (dB)

LFS = path loss, usually free space loss (dB)

LM = miscellaneous losses (fading margin, body loss, polarization mismatch) (dB)

GRX = receiver antenna gain (dBi)

LRX = receiver losses (dB)

5.2.3 Digital Features

The device exposes and interface which can be used to control different states the internal
state machine can pass through. In this section we give only an high level overview, since
in Chapter 6 we have to better explain some details for the driver development.

Command interface Over a Serial Peripheral Interface SPI the transceiver provides
a programming interface (in Chapter 6 we show some details about it). This way
is possible to access the memory of the device for read or write operations, to
configure its behaviour and to read informations about the current working status.
The memory layout can be seen as a set of registers each with a different purpose,

50 CHAPTER 5. HARDWARE DESCRIPTION

such as enabling cryptographic operations, setting interrupt signals and conditions,
and controlling the radio state machine for switching between transmissions and
receptions.

Packet support The device has internally two 128 bytes memories for buffering re-
ceive and transmit operations. This are used to unload the processor from some
synchronous radio operation that can block it too much frequently. These buffers
contains the row data packet being transmitted or received. It is possible to in-
struct the transceiver to interrupt the CPU when a packet has been received or
a transmission has completed. Internally, there is also the possibility to setup an
automatic acknowledge response when a correct packet has been fully verified.

Wake On Radio This is an interesting feature as it permits the main processor to go
in low power consumption states. The radio systems, itself in low power state, is
capable of detecting pertinent radio activity and wake up the CPU with interrupt
signals. Being able to use such functionality could really improve battery life.

AES Accelerator This is an embedded accelerator for implementing cryptographic
operations. This possibility further offload the CPU from packet related compu-
tations.

Chapter 6

Software Development

Another important activity in developing IoT applications is the software development
process. Even if the application does not require particular algorithms, efficient data
structures or meticulous code optimizations, the act of writing computer code for im-
plementing whatever application logic or functionality is not a trivial task. A discipline
which tries to govern the process and identify good methodologies among those that
are bad or ineffective is Software Engineering. Thematics that are usually questioned
regard:

• Keeping the documentation in a good state as the software evolve. This is im-
portant as the documentation describes the behaviour of the program from an
high level point of view, thus helping a lot in reasoning about code properties
and because it establishes a communication medium between developers. Other
documentation kinds may be more end-user oriented. Maintaining a good docu-
mentation is a difficult process because the possibility to go out of synchronization
is easy, as in some case the code grows and evolve at a rapid pace.

• The testing phase is also an important activity as the system might exhibit some
strange behaviour that was not conceived during the writing process. It is very
important to execute the product under different conditions in order to see what
are its weaknesses and to assure an acceptable user experience.

• Some people comment that the most difficult part is bug fixing. Some bugs
can emerge during the test phase, in which the software crashes under certain
configurations, but also after the latest release where the user directly experiences
strange behaviour or anomalies. Other problems regard the vulnerabilities a bug
may entail. Those are even more subtle, difficult to find and also to correct.

These thematics are very important and can incisively condition the final product
quality and time to market parameters. Almost every software system is affected by
these problems but it is also true that some type of systems present their particular
difficulties. For this thesis we worked closely with the operating system and we found

51

52 CHAPTER 6. SOFTWARE DEVELOPMENT

that writing code intended to run without the protection of a supervisor, such as the code
to implement a driver, may involve some additional issues. The most important of these
is when a program running in kernel space executes some harmful operation, the kernel
may not be able to recover the situation and can halts abruptly. This circumstance force
the developer to restart the system over and over again until the problem is resolved,
wasting a lot of valuable time. Another related problem is the difficulty in examine what
caused a crash, for instance, because being inside the operating system itself lack the
availability of important monitoring tools, such as debuggers.

For embedded software the situation complicates the process a little more. This
is due to the embedded systems nature of being almost totally integrated in devices
and packages. So, for the developer is more difficult to interact and observe inner
behaviours as some special connections have to be prepared specifically for this purpose.
Other special requirements regard the toolchain that, when the machine being developed:
called target, and the machine used for the development: host are different, has to be
carefully configured. The latter concept is called cross-compilation. In following sections
we explain further what it means. Also, memory images being produced have to be
transferred from the host to the target. This mechanisms, sometimes called flashing,
is very delicate since the image must be formatted in specific ways and the location is
usually machine dependant and has to be carefully determined.

The choice of programming languages, in embedded software and especially for oper-
ating systems, is pretty reduced since the lack of a runtime support, always provided by
high level languages, implicates the use of low-level and poor-abstraction-mechanisms
programming languages. At the time in which Unix was first invented, proceedings in
programming language design and theory was quite advanced. The C Programming
Language was born in this context and determined a vast transformation in developing
system programs. Different agencies implemented this language in early moments and a
lot of companies are using this language extensively today. Strength of this programming
language are about the very well designed abstractions it provides. Data abstractions
is very simple and elegant and permits to specify memory layout and alignment for
objects of every kind. Procedural abstraction is clean and fully reflect the underlying
stack-based machine usually implemented in modern systems. The language is statically
typed with bit arithmetic, common control flow and casting features. The most charac-
teristic, though, is the pointer arithmetic which permits to represent expression whose
value is not a direct state (an object), but rather a pointer to some object. This gives the
possibility to carefully design powerful indirections, thus achieving good performance
boosts.

In the following we provide a summary of the experience we had while developing a
driver for the Linux kernel.

6.1 Development Setup

In this section we illustrate the configuration we adopted to ease the development pro-
cess. As previously explained the usual embedded software development style sees two

6.1. DEVELOPMENT SETUP 53

systems: target and host. There are different methodologies to connect these systems
and some are very effective and a consistent time has to be spent in properly configure
these two components. As the development process is done through a lot of repetitive
tasks, such as re-compile, re-load and re-execute the code to see if it behaves well, speed-
ing up the single phase can really increase the total amount of tests conducted and lines
of code written, thus permitting to be more efficient.

6.1.1 Cross Compiling

Figure 6.1: Compiler phases for a C program

The term cross compiling denote a particular configuration in which binaries are
produced in a machine that is architecturally different from the one used to actually run

54 CHAPTER 6. SOFTWARE DEVELOPMENT

the software. In Figure 6.1 we can see how a compiler achieve the translation of a C
source program into a binary able to run on the given target machine. Among all the
phases a compiler performs, we give a short explanation only for what concern the cross
compiling thematic.

Front-end This is the part of the compiler that read the source code and interpret
the information included. The process is called parsing and produces as final
output a tree-like data structure suitable for implementing error detection and
translation into an assembly-like language used by later phases. This phase can
be architectural independent.

Code generation Such phase actually produces the list of instructions that will run
on the machine. So, it is machine dependent. At this point a lot of code trans-
formation are performed in order to optimize some resource utilization, such as
memory utilization or number of instructions executed.

Linking The process of linking is about actually making the binary run in the final
environment, so this phase is not only dependant upon the memory configuration
(segments), but also on the operative system that will eventually load and run that
code. This is sometimes called runtime support. The linker is also responsible for
integrating in the final binary information included in libraries. There are basically
two types of inclusions: static and dynamic. The latter is more common because
achieves better memory re-utilization and in the Linux context is usually called
the shared libraries (.so) mechanism.

The toolchain has to be properly configured to produce the right executable. In the
recent years a lot of tools have been created in order to ease the development process
for embedded applications. For our experiments we used the Linaro Toolchain. This
is based on famous GNU tools: gcc, ld, objdump, ar, as and also the debugger gdb.
The Linaro Toolchain has shown to be a very useful since it is able to produce binary
optimized for a specific ARM machine architecture, such as little-endian or big-endian,
and with the right runtime support. The latter phase is rather difficult to implement
because the compiler has to know the version of the kernel the binary will run on and
has to link with a set of fundamental system library, as libc and others.

6.1.2 Serial Line Console

In this section we explain how to interact with the development board. A very common
way to achieve simple communications between host and target machine is with a serial
port. Although this system is classical, it is widely used as it is very simple and adopted
by a wide range of embedded system producers. This interface transfers in or out one
bit at a time (in contrast to a parallel port) and can transmit up to 115200 bit/s. Such
low rate transmission is not suitable for flashing images or loading other binaries on the
target, but can really become useful if on the target there is a software component able
to implement a console over this communication link. Both U-Boot and Linux can let

6.1. DEVELOPMENT SETUP 55

the user interact through a console and this is why we used such connection in the first
place.

When the machine is powered on, it loads from a given memory location the image
of U-Boot and starts executing. The bootloader initializes the hardware needed for
talking on the serial port and starts a console-like driver on it. At this point we are
able to send command to U-Boot and receive output back. This is really helpful because
we can preempt the machine at a very initial step and instruct it how to load the
next components in the bootstrap sequence. We explain how this feature decreased
development time in the next section.

On the host, we need the respective components for the interaction to have place.
Linux has a lot of tools to talk on serial lines and we chose minicom, which is one of
the most stable serial protocol agents. The command to use on the host machine is

$ minicom -D /dev/ttyUSB0

The string -D /dev/ttyUSB0 instructs minicom to use the special device file for the
communication. The Linux kernel loads the specific driver once it sees that there is a
new link of a certain kind.

6.1.3 System Setup

One really useful feature provided by U-Boot is to permit network boots. Before ex-
plaining the boot process, we have to show what particular images are generated by a
kernel build and what is the purpose of each of them. The bootloader has to know where
to find this data, implement the protocol for transferring binaries, placing them at the
right location and start the kernel.

uImage This contains the kernel code which has been statically built into it. In par-
ticular, the format of this binary is tailored to U-Boot specific needs.

dtb Device Tree information, as describe in Chapter 4, contains a description of the
hardware where the operating systems will run on. Then, the kernel uses such
information to load the specific software for driving the given device, for example
a power manager could reside on the main bus and the kernel finds the device
model and the register location of this device in the device tree. As we saw, such
information is specified with a simple programming language. A translation has to
be performed also for the device tree data. The result is a binary with extension
.dtb.

.ko The Linux kernel support dynamic loadable modules. These modules are built
separately from the main image and have extension .ko (kernel object). Such
binaries have to reside on a filesystem to be loaded at the moment in which the
kernel needs them for activating particular features.

rootfs Without userspace application a kernel has nothing to perform. Later in the
loading process a kernel usually mount a filesystem and automatically executes

56 CHAPTER 6. SOFTWARE DEVELOPMENT

the program /sbin/init. Without going into details, such program instructs the
kernel which other services to load next in order to run an operating system full
of useful services. Other components found on a root filesystem are: /etc that
contains all the configuration file of programs present on the system, /home/ for
user data, /usr/bin for user utilities, such as the famous bash and others.

Loading Process

We now provide as illustrated in the Figure 6.2 a diagram to show how we organized the
host-target configuration to speed up the development process.

Figure 6.2: Development setup

The steps followed to boot the operating system are listed. During the process
the serial line keeps transmitting data related to the console, this way we can receive
bootloader and kernel output as they load.

• at the right time the system powers on, the cpu executes the bootloader code that
is located in a NAND memory on the board. We had to manual flash this image.

• using the TFTP protocol over the Ethernet link, U-Boot contact the host to re-
trieve dtb files. These files are located on the host’s filesystem in a specific shared
directory. Data is transferred to the right memory address.

• in the same way the bootloader now receives the kernel image and start the loading
procedure specified by Linux.

6.2. DRIVER DEVELOPMENT 57

• when the kernel is ready to start the init process, through the NFS protocol in
execution on the Ethernet link, it tries to mount the network filesystem and then
execute the file /sbin/init. On the host computer the NFS daemon is running
while this happens.

In order to achieve this, U-Boot has to be instructed to perform the right operations
on right file names. This parameters can be specified in a sort of internal environment
in which the programmer can set the booting protocol to use when loading images, in
our case that is called TFTP, and also the location and names of the file in the shared
folder. Given this shell scripting-like feature the user can issue a reset by pressing the
reset button and the system execute the points highlighted before automatically. In
fact, with this method no image is copied by hand and all the information is located
on the host’s filesystem where the building process places its output. This way permits
to modify the kernel, compile it into an image and, by just pressing the reset button,
bootstrap the already built system. Compared to the manual operation this strategy is
definitively more efficient.

Another useful feature is to have the filesystem residing on the host machine, as
for the kernel image. With the use of the NFS protocol we can share files between
the host and the target system. Even though this makes file transfer for development
related stuff easy, the most important feature is to have .ko file on a filesystem mounted
simultaneously on the target and the host. Instead of compiling the driver code statically
inside the kernel, we instructed the kernel build process to build it as a loadable module.
As this operation is much faster then building the big kernel image, driver modifications
can be uploaded to the target kernel with two simple short operations:

/path/on/host-$ amb-make

and

/on/the/target-$ modprobe cc120x

The first command, which is a script that simply sequences other commands, build
driver’s modules using the host machine and move the resulting .ko files in the shared
folder, while the second instructs the target system to load them into the kernel. This
further accelerates code development, being almost as fast as if the building process
addressed the local machine.

6.2 Driver Development

In this section we provide an overview of the driver development process. Since the
Linux kernel wants to carefully organize the driver model architecture, for the purpose
of code reuse and maintainability, it tends to provide a common interface for module
initialization and registration in almost all subsystem. The protocol ideas is illustrated
in the following listing (taken from the kernel source code and simplified).

58 CHAPTER 6. SOFTWARE DEVELOPMENT

/*

* Represents the operations a driver has to implement

* for being properly attached to a particular subsystem.

*/

struct ieee802154_ops {

int (*start)(struct ieee802154_hw *hw);

void (*stop)(struct ieee802154_hw *hw);

int (*xmit_sync)(struct ieee802154_hw *hw, struct sk_buff *skb);

int (*xmit_async)(struct ieee802154_hw *hw, struct sk_buff *skb);

int (*set_channel)(struct ieee802154_hw *hw, u8 page,

(...)

};

/*

* Static variable for specifying what function should be

* called in a particular situation.

*/

static const struct ieee802154_ops mydrv_ops = {

.start = mydrv_start,

.stop = mydrv_stop,

.xmit_sync = mydrv_tx,

.ed = mydrv_ed,

.set_channel = mydrv_set_channel,

(...)

};

/* Example of a subsystem registration */

{

int ret;

ieee802154_hw desc;

// memory allocation

desc = ieee802154_alloc_hw(sizeof(*priv), &mydrv_ops);

if (!desc)

goto error;

// then the real subsystem registration

ret = ieee802154_register_hw(desc);

if (ret)

6.2. DRIVER DEVELOPMENT 59

goto error;

}

The model suggests that, in order to implement a driver for a device that pro-
vides functionality needed by a particular subsystem (in our example is the Linux IEEE
802.15.4 support subsystem), the developer has to define all necessary callbacks and pass
them to the registration procedure, contained in a suitable data structure.

6.2.1 Kernel Subsystems

In our development process we used two Linux subsystems. The following gives a small
overview, extracted from kernel documentation files.

Serial Peripheral Interface

The Serial Peripheral Interface SPI is a synchronous four wire serial link used to connect
microcontrollers to sensors, memory, and peripherals. It’s a simple “de facto” standard
not complicated enough to acquire a standardization body, very general and usable in
different contexts. In contrast with classical serial ports, which are asynchronous, SPI
uses separate lines for data and clock thus keeping both sides in perfect sync. SPI devices
communicate in full duplex mode using a master-slave architecture with a single master
originating the frame for reading and writing. Multiple slave devices are supported
through selection with individual slave select (SS) lines.

The bus is composed of four logical signals:

CLK Serial Clock (output from master)

MOSI Master Output, Slave Input (output from master)

MISO Master Input, Slave Output (output from slave)

SS Slave Select (active low, output from master)

Linux has a very good support for this low-level communication protocol. For ex-
ample, it provides full support of master devices: it abstracts common configuration
operations, such as setting the clock frequency and the clock modes which establishes
the signal edge to use for syncing transmitted bits. Next in the driver explanation, we
show how to send SPI messages to a device.

IEEE 802.15.4 Subsystem

This layer wants to implement the IEEE 802.15.4 standard. The network stack is com-
posed of three main parts:

• socket API the generic Linux networking stack to transfer IEEE 802.15.4 mes-
sages and a special protocol over genetlink for configuration/management

60 CHAPTER 6. SOFTWARE DEVELOPMENT

• MAC provides access to shared channel and reliable data delivery

• PHY represents device drivers

To be more general as possible there are two types of ieee802154 devices. Hard-
MAC, where the entire MAC layer is implemented in the device itself. The developer
has to implement a particular interface for the kernel to properly include the MAC layer
inside the network subsystem. Data is exchanged with socket family code via plain
sk buffs. The other type is the SoftMAC, meaning that the MAC layer is implemented
inside the kernel. This is the interface we had to write for, because even though the
CC1200 provides support for packet handling and cryptography it does not implement
advanced data link features.

6.2.2 Driver Operations

In this section we highlight some important operation the driver code has to perform.

Initialization and Probing The module system has to know what init function to
call upon module loading. Every module must define how to initialize its resources
and how to free them. Following the previous driver model protocol this is done
by defining two callbacks

static const struct of_device_id cc120x_of_ids[] = {

{.compatible = "ti,cc120x", },

{},

};

MODULE_DEVICE_TABLE(of, cc120x_of_ids);

static struct spi_driver cc120x_driver = {

.driver = {

.name = "cc120x",

.bus = &spi_bus_type,

.owner = THIS_MODULE,

.of_match_table = of_match_ptr(cc120x_of_ids),

},

.probe = cc120x_probe,

.remove = cc120x_remove,

};

module_spi_driver(cc120x_driver);

MODULE_AUTHOR("MOTT SIRT");

MODULE_DESCRIPTION("CC120X Transceiver Class Driver");

6.2. DRIVER DEVELOPMENT 61

cc120x probe and cc120x remove serves this scope. Another important point to
note from the listing is that the string .compatible = "ti,cc120x" is what is
matched when the kernel load a flattened device tree with that device name.

Registration in Ieee802154 Subsystem The registration is quite simple. Plus the
usual callback mechanisms the ieee802154 layer permits a lot of configurations to
be passed to. Such parameters has to be set prior the registration call and can
specify the type of encryption supported, hardware capabilities and channels at
disposal.

Interrupts Handling The CC1200 device has the feature of automatically signaling
when an internal event requires the intervention of the CPU, such as a packet
has been correctly received. Linux permits to request that when a GPIO input
pin detects a positive edge the internal CPU interrupt is routed to call the driver
specific function. This way it is possible to be preempted by the transceiver.
A point worth noting is the fact that the interrupt service function specified to
handle the external stimulus, should be as short as possible because the processor
while executing such function remains in a non-preemptable state and this period
has to last for small times. In Linux this is resolved by writing a very small ISR
driver function that actually instructs an internal work queue to perform the actual
interrupt handling as soon as possible, thus leaving non-preemptable state in very
short time.

SPI Messages The SPI interface is very general and permit to have full control over
the content of messages transmitted on the link.

/* DATA DECLARATION */

u8 *cmd_buf; //non initialized

u8 *data_buf; //

struct spi_message msg;

struct spi_transfer cmd_xfer = {

.len = 1,

.tx_buf = cmd_buf,

};

struct spi_transfer data_xfer = {

.len = 4,

.rx_buf = data_buf,

};

/* MESSAGE CONSTRUCTION */

spi_message_init(&msg);

spi_message_add_tail(&cmd_xfer, &msg);

spi_message_add_tail(&data_xfer, &msg);

/* MESSAGE SUBMIT */

62 CHAPTER 6. SOFTWARE DEVELOPMENT

status = spi_sync(priv->spi, &msg);

From the listing is clear that the interface is used following these steps: 1) Data
source declarations should be linked within specific structures, 2) The message is
allocated and assembled 3) The message is sent over the link.

Debug A useful feature we have used is enabling the driver to send debug messages to
special buffers inside the kernel. These are used to inspect system behaviour when
something happens. It is sufficient to call the function

dev_dbg(&priv->spi->dev, "spi status = %d\n", status);

6.3 Tests and Experiments

In order to test the driver, we used the suite wpan-tools that provide two tools for
interacting with network interfaces and ieee802154 devices.

iwpan uses the netlink interface to access ieee802154 layer specific informations about
devices found on the system. Typical uses are: setting PAN identifier, node iden-
tifier, list available channels/pages, enable or disable channels, etc.

wpan-ping implements a ping-like loop at MAC layer. We used this command to
compute round trip time measures.

Chapter 7

Conclusions

The main thematic of this thesis is to create a link between this new trend of Internet of
Things and the development process that is necessary to implement modern smart ob-
jects networks. The process is really complex and entail issues from different disciplines.
We showed some aspect of protocol design and which data link features and physical
layer features are well suited for smart metering utility networks. Devices for IoT system
also present peculiar characteristics that most of the time regard embedded system with
low complexity and low-power consumption, with the ability to last for decades. Such
feature, without a good software support is not easy to obtain, though.

The study has been conducted on the characteristics that an operating system should
have in order to be a good candidate for IoT-oriented embedded systems.

• a wide support of different hardware architectures and devices

• good flexibility and configuration capabilities, in term of selected software compo-
nents that will be part of the final binary

• modern networking subsystem, adaptable to different protocol needs and customiz-
able to implement adhoc signaling and interface management

Such traits are full matched with a community developed software. The wide selection
of devices supported is because a lot of different developers around the world want to
port a free and open source software on their hardware. The model is pretty simple: a
developer can access for free to a code base that is the result of the efforts of thousands
of other people and a lot of development time, so it should probably be a useful piece
of software. He/she can use such software to achieve his/her needs, by respecting the
license, and then return to the community the precious integration of drivers he/she
might have developed to complete his/her task, for instance. Those are usually difficult
to implement because one person has to lay a hand on the device which sometimes can
cost hundreds of dollars. With the same reasoning also the second point is guaranteed,
because a multitude of persons often end up having totally different objectives. This
assure that the internal code is maintained with a re-usability goal in mind, thus keeping
system configuration, building and internal subsystems extremely adaptable. However,

63

64 CHAPTER 7. CONCLUSIONS

an opposite effect of being involved in a open source community, such as Linux, that
some people or even companies may dislike, is the fact of being auto regulated projects.
It is true that some people have the power of taking important decision on the design
or on the community behaviour, but generally speaking the usual open source software
organization is quite loose, from the management point of view. This, for example, can
entail the lack of a well structured documentation or even a long learning process for
people who wants to be able to understand and to make full use of software features.

Internet of Things is a trend that is expanding at an incredible pace. Such process
will likely transform the world we live as this technology will enter every aspects of
our life. This is also true from an open source community point of view. The space
for implementation and community growth remains vast, as every innovation in the
Information Technology sector opens new horizons. The question we leave for further
reasoning is how the open source approach will respond to this imminent breakthrough
innovation. Is it possible that one day Linux will power every IoT device on earth? How
will this impact with the industry? How will the development of IoT systems be, easier
or even more complex?

Bibliography

[1] Karen Rose, Scott Eldridge, Lyman Chapin, The Internet of Things: An Overview
Understanding the Issues and Challenges of a More Connected World, Internet
Society, October 2015.
http://www.internetsociety.org/doc/iot-overview

[2] H. Tschofenig, J. Arkko, D. Thaler, D. McPherson Architectural Considerations in
Smart Object Networking, Internet Architecture Board (IAB), March 2015.
http://www.rfc-editor.org/info/rfc7452

[3] IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs), IEEE-SA Standards Board
September 2011.

[4] IEEE Standard for Local and metropolitan area networks, Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs), Amendment 3: Physical Layer
(PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Net-
works, IEEE-SA Standards Board April 2012.

[5] N. Kushalnagar, G. Montenegro, C. Schumacher, IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem State-
ment, and Goals, IETF Network Working Group August 2007.

[6] G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, Transmission of IPv6 Packets
over IEEE 802.15.4 Networks, IETF Network Working Group September 2007.

[7] Andrew Tanenbaum, Herbert Bos Modern Operating Systems, O’Reilly Media, 4st
edition, March 2014.

[8] Greg Kroah-Hartman, Linux Kernel in a Nutshell, O’Reilly Media, 1st edition,
2006.
http://www.kroah.com/lkn/

[9] linux.org, The Linux Kernel: The Source Code, 2013.
http://www.linux.org/threads/

the-linux-kernel-the-source-code.4204/

65

66 BIBLIOGRAPHY

[10] tldp.org, The Linux Kernel, 1999.
http://en.tldp.org/LDP/tlk/tlk.html

[11] Kernel source tarball’s documentation subdirectory.
https://www.kernel.org/doc/Documentation/

[12] AMBER Website.
http://www.amber-lab.com/

[13] Texas Instruments CC120X Low-Power High Performance Sub-1 GHz RF
Transceivers Users Guide, September 2014, http://www.ti.com/product/

CC1200/technicaldocuments.

