324 research outputs found

    A New Large Scale SVM for Classification of Imbalanced Evolving Streams

    Get PDF
    Classification from imbalanced evolving streams possesses a combined challenge of class imbalance and concept drift (CI-CD). However, the state of imbalance is dynamic, a kind of virtual concept drift. The imbalanced distributions and concept drift hinder the online learner’s performance as a combined or individual problem. A weighted hybrid online oversampling approach,”weighted online oversampling large scale support vector machine (WOOLASVM),” is proposed in this work to address this combined problem. The WOOLASVM is an SVM active learning approach with new boundary weighing strategies such as (i) dynamically oversampling the current boundary and (ii) dynamic weighing of the cost parameter of the SVM objective function. Thus at any time step, WOOLASVM maintains balanced class distributions so that the CI-CD problem does not hinder the online learner performance. Over extensive experiments on synthetic and real-world streams with the static and dynamic state of imbalance, the WOOLASVM exhibits better online classification performances than other state-of-the-art methods

    A New Data-Balancing Approach Based on Generative Adversarial Network for Network Intrusion Detection System

    Get PDF
    An intrusion detection system (IDS) plays a critical role in maintaining network security by continuously monitoring network traffic and host systems to detect any potential security breaches or suspicious activities. With the recent surge in cyberattacks, there is a growing need for automated and intelligent IDSs. Many of these systems are designed to learn the normal patterns of network traffic, enabling them to identify any deviations from the norm, which can be indicative of anomalous or malicious behavior. Machine learning methods have proven to be effective in detecting malicious payloads in network traffic. However, the increasing volume of data generated by IDSs poses significant security risks and emphasizes the need for stronger network security measures. The performance of traditional machine learning methods heavily relies on the dataset and its balanced distribution. Unfortunately, many IDS datasets suffer from imbalanced class distributions, which hampers the effectiveness of machine learning techniques and leads to missed detection and false alarms in conventional IDSs. To address this challenge, this paper proposes a novel model-based generative adversarial network (GAN) called TDCGAN, which aims to improve the detection rate of the minority class in imbalanced datasets while maintaining efficiency. The TDCGAN model comprises a generator and three discriminators, with an election layer incorporated at the end of the architecture. This allows for the selection of the optimal outcome from the discriminators’ outputs. The UGR’16 dataset is employed for evaluation and benchmarking purposes. Various machine learning algorithms are used for comparison to demonstrate the efficacy of the proposed TDCGAN model. Experimental results reveal that TDCGAN offers an effective solution for addressing imbalanced intrusion detection and outperforms other traditionally used oversampling techniques. By leveraging the power of GANs and incorporating an election layer, TDCGAN demonstrates superior performance in detecting security threats in imbalanced IDS datasets.PID2020-113462RB-I00, PID2020-115570GB-C22 and PID2020-115570GB-C21 granted by Ministerio Español de Economía y CompetitividadProject TED2021-129938B-I0, granted by Ministerio Español de Ciencia e Innovació

    Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition

    Get PDF
    Human activity recognition (HAR) using wearable sensors is a topic that is being actively researched in machine learning. Smart, sensor-embedded devices, such as smartphones, fitness trackers, or smart watches that collect detailed data on movement, are widely available now. HAR may be applied in areas such as healthcare, physiotherapy, and fitness to assist users of these smart devices in their daily lives. However, one of the main challenges facing HAR, particularly when it is used in supervised learning, is how balanced data may be obtained for algorithm optimisation and testing. Because users engage in some activities more than others, e.g. walking more than running, HAR datasets are typically imbalanced. The lack of dataset representation from minority classes, therefore, hinders the ability of HAR classifiers to sufficiently capture new instances of those activities. Inspired by the concept of data fusion, this thesis will introduce three new hybrid sampling methods. Thus, the diversity of the synthesised samples will be enhanced by combining output from separate sampling methods into three hybrid approaches. The advantage of the hybrid method is that it provides diverse synthetic data that can increase the size of the training data from different sampling approaches. This leads to improvements in the generalisation of a learning activity recognition model. The first strategy, known as the (DBM), combines synthetic minority oversampling techniques (SMOTE) with Random_SMOTE, both of which are built around the k-nearest neighbours algorithm. The second technique, called the noise detection-based method (NDBM), combines Tomek links (SMOTE_Tomeklinks) and the modified synthetic minority oversampling technique (MSMOTE). The third approach, titled the cluster-based method (CBM), combines cluster-based synthetic oversampling (CBSO) and the proximity weighted synthetic oversampling technique (ProWSyn). The performance of the proposed hybrid methods is compared with existing methods using accelerometer data from three commonly used benchmark datasets. The results show that the DBM, NDBM and CBM can significantly reduce the impact of class imbalance and enhance F1 scores of the multilayer perceptron (MLP) by as much as 9 % to 20 % compared with their constituent sampling methods. Also, the Friedman statistical significance test was conducted to compare the effect of the different sampling methods. The test results confirm that the CBM is more effective than the other sampling approaches. This thesis also introduces a method based on the Wasserstein generative adversarial network (WGAN) for generating different types of data on human activity. The WGAN is more stable to train than a generative adversarial network (GAN) and this is due to the use of a stable metric, namely Wasserstein distance, to compare the similarity between the real data distribution with the generated data distribution. WGAN is a deep learning approach, and in contrast to the six existing sampling methods referred to previously, it can operate on raw sensor data as convolutional and recurrent layers can act as feature extractors. WGAN is used to generate raw sensor data to overcome the limitations of the traditional machine learning-based sampling methods that can only operate on extracted features. The synthetic data that is produced by WGAN is then used to oversample the imbalanced training data. This thesis demonstrates that this approach significantly enhances the learning ability of the convolutional neural network(CNN) by as much as 5 % to 6 % from imbalanced human activity datasets. This thesis concludes that the proposed sampling methods based on traditional machine learning are efficient when human activity training data is imbalanced and small. These methods are less complex to implement, require less human activity training data to produce synthetic data and fewer computational resources than the WGAN approach. The proposed WGAN method is effective at producing raw sensor data when a large quantity of human activity training data is available. Additionally, it is time-consuming to optimise the hyperparameters related to the WGAN architecture, which significantly impacts the performance of the method

    Learning from Multi-Class Imbalanced Big Data with Apache Spark

    Get PDF
    With data becoming a new form of currency, its analysis has become a top priority in both academia and industry, furthering advancements in high-performance computing and machine learning. However, these large, real-world datasets come with additional complications such as noise and class overlap. Problems are magnified when with multi-class data is presented, especially since many of the popular algorithms were originally designed for binary data. Another challenge arises when the number of examples are not evenly distributed across all classes in a dataset. This often causes classifiers to favor the majority class over the minority classes, leading to undesirable results as learning from the rare cases may be the primary goal. Many of the classic machine learning algorithms were not designed for multi-class, imbalanced data or parallelism, and so their effectiveness has been hindered. This dissertation addresses some of these challenges with in-depth experimentation using novel implementations of machine learning algorithms using Apache Spark, a distributed computing framework based on the MapReduce model designed to handle very large datasets. Experimentation showed that many of the traditional classifier algorithms do not translate well to a distributed computing environment, indicating the need for a new generation of algorithms targeting modern high-performance computing. A collection of popular oversampling methods, originally designed for small binary class datasets, have been implemented using Apache Spark for the first time to improve parallelism and add multi-class support. An extensive study on how instance level difficulty affects the learning from large datasets was also performed

    Streaming Active Learning Strategies for Real-Life Credit Card Fraud Detection: Assessment and Visualization

    Full text link
    Credit card fraud detection is a very challenging problem because of the specific nature of transaction data and the labeling process. The transaction data is peculiar because they are obtained in a streaming fashion, they are strongly imbalanced and prone to non-stationarity. The labeling is the outcome of an active learning process, as every day human investigators contact only a small number of cardholders (associated to the riskiest transactions) and obtain the class (fraud or genuine) of the related transactions. An adequate selection of the set of cardholders is therefore crucial for an efficient fraud detection process. In this paper, we present a number of active learning strategies and we investigate their fraud detection accuracies. We compare different criteria (supervised, semi-supervised and unsupervised) to query unlabeled transactions. Finally, we highlight the existence of an exploitation/exploration trade-off for active learning in the context of fraud detection, which has so far been overlooked in the literature
    • …
    corecore