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Abstract 

Classification from imbalanced evolving streams possesses a combined challenge of class imbalance and concept drift (CI-CD). However, the 

state of imbalance is dynamic, a kind of virtual concept drift. The imbalanced distributions and concept drift hinder the online learner’s 

performance as a combined or individual problem. A weighted hybrid online oversampling approach,”weighted online oversampling large scale 

support vector machine (WOOLASVM),” is proposed in this work to address this combined problem. The WOOLASVM is an SVM active 

learning approach with new boundary weighing strategies such as (i) dynamically oversampling the current boundary and (ii) dynamic weighing 

of the cost parameter of the SVM objective function. Thus at any time step, WOOLASVM maintains balanced class distributions so that the 

CI-CD problem does not hinder the online learner performance. Over extensive experiments on synthetic and real-world streams with the static 

and dynamic state of imbalance, the WOOLASVM exhibits better online classification performances than other state-of-the-art methods. 
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1 Introduction 

 In real-life scenarios like credit card fraud, intrusion 

and spam detections, the data evolves like imbalanced 

evolving streams where the problem of class imbalance and 

concept drift coexists. However, the literature addresses both 

of these problems independently. 

 The class imbalance learning (CIL) problem on 

standalone training sets arises when the majority of data 

belongs to one class, degrading the performance of the 

minoritized class. This issue has received much attention, and 

numerous techniques were developed at data and algorithm 

levels [1]. Oversampling and/or undersampling procedures 

are used at the data level to balance the class distributions. 

The algorithm level solutions modify the decision boundary 

towards the minority class by assigning extra costs or 

parameter weights that reflect the minority class. The degree 

of imbalance drives most of these methods. 

 On the other hand, the concept drift (CD) in 

evolving streams occurs when the statistical properties of the 

underlying functions change over time. According to [2], two 

types of concept drifts such as (i) real and (ii) virtual are 

possible. Let the training set with predicting and target 

variables x and y. In real drift, also referred to as posterior 

drift (i.e., p(y/x)), distributions changes lead to decision 

boundary changes. In contrast, positional shift such as a 

change in prior probability (i.e., p(y)) happens which causes 

imbalance drift [3] in virtual concept drift. Unlike the 

conventional problem in the evolving imbalanced stream, the 

class imbalance is inconsistent and varies from time to time 

dynamically. It is possible that over time, the minority 

samples will become the majority, and vice versa. As a result, 

the learner does not know the status of imbalance in advance. 

Online learners must adapt to these dynamic changes [3]. 

Usually, there are three types of drifts. In abrupt drifts, there 

is a sudden change in concept. The change is gradual in 

gradual drifts. Drifts recur over time in recurrent drifts. 

 From the standalone class imbalance problem [4], 

apart from the data features like degree of imbalance, size of 

the dataset, and the degree of overlapping, the classifier also 

implicates performance degradation. For imbalanced 

evolving streams, solutions like recursive least square 

adaptive cost perceptron (RLSACP) [5] and online neural 

network (ONN) [6], and a weighted online sequential extreme 

learning machine (WOS-ELM) [7] are suggested based on 

NN. Further online bagging [8] and extreme learning based 

ensembles [9] are tailored to address this problem. 

 However, in the case of standalone class imbalance 

problem, SVM exhibits better generalization abilities than 

other conventional classification algorithms [4, 10]. Further, 

it is also extensively used in active learning [11] as the 

distance between a data point to the hyperplane is calculated 

directly. SVM active learning methods progressively enhance 

the model performances by incremental boundary updates. 

Therefore this work focuses on SVM based active learning 

solution to the combined problem of class imbalance and 
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virtual concept drift (i.e., imbalance drift p(y)) in imbalanced 

evolving streams. The following are the paper’s significant 

contributions: 

 

1) A weighted oversampling large scale support vector 

machine to cope with evolving imbalanced streams.  

2) A dynamic oversampling strategy to balance the boundary 

at any time step t. 

3) A dynamic asymmetric cost weighing strategy for SVM 

online imbalance stream learning.  The remainder of this 

paper is structured as follows. The related work on the online 

dynamic class imbalance problem is presented in section 2. 

Section 3 addresses the motivation for our work and the 

required background techniques. The proposed algorithm is 

shown in section 4. Section 5 discusses the obtained results, 

and finally, section 6 brings the paper to a close. 

 

2 Related Work 

 Concerned about the combined problem, handling 

either concept drift or class imbalance prior is a critical issue 

[3]. However, detecting the p(y/x) prior is prone to the impact 

of class imbalance. The solutions proposed so far indicate that 

the class imbalance in static and dynamic states should be 

addressed first. 

 Drift detection can be handled in two ways [12]: 

active or passive. In the former methods, the learner first 

detects the drift and then it is updated to cope with the data 

changes. Unlike the former techniques, the latter approaches 

update the model implicitly. Based on the drift handling 

criteria, the solutions that address the imbalanced evolving 

streams are arranged under three categories: (1) static class 

imbalance-no drift, (2) dynamic class imbalance (i.e., 

imbalance drift (p(y))), and (3) p(y/x) drift detection methods. 

2.1 Static class imbalance- no drift 

 Learn++. CDS and Learn++. NIE [13] are two 

oversampling ensembles extended from Learn++, proposed 

for handling concept drift. The static state of imbalance is 

handled with synthetic minority oversampling techniques in 

these approaches. Other ensemble approaches such as SERA 

and REA [14, 15] learn from balanced class distributions 

obtained by propagating informative minority samples from 

previous to the current batch. These minority samples are 

selected on their similarity with the current batch minority 

samples. Here, the concept drift is addressed as the majority 

voting over-weighted soft-typed hypothesis (i.e., sample’s 

maximum likelihood that belongs to one of the classes) so far 

learned. In another proposal, HUWRS [16] adapts the random 

subspace ensemble method for identifying drifting features. 

Here the drift detection is carried out using hellinger distance. 

In this approach, whenever a feature drift is triggered, the 

corresponding classifier in the ensemble only gets reset based 

on its weights. The extended version of HUWRS [16], 

HUWRS. IP [17] introduces an instance propagation 

mechanism using a naive bayes classifier to select old 

minority samples for achieving more balanced distributions. 

 Wang et al. [18] proposed k-means clustering 

undersampling-based ensemble to cope with evolving 

imbalanced streams with concept drift. However, an 

additional buffering mechanism is required for batch learning 

to maintain the samples. Single classifier variants like 

RLSACP [5] and ONN [6] are based on NN. In this case, the 

class imbalance is addressed with an adaptive weighing of 

perceptron error either with classification rate or the degree 

of imbalance. Mirza et al. [7] proposed WOS-ELM for class 

imbalance learning. However, the WOS-ELM can address the 

class imbalance problem in both batches and online fashion. 

In order to detect p(y/x) drift, it is extended to an ensemble of 

the subset of the online sequential extreme learning machine 

(ESOS-ELM) [9], where each classifier from a pool of 

ensemble is learned with a balanced class distribution. 

Whenever a p(y/x) drift gets detected, a new learner is 

appended to the learner’s pool, and the dynamic voting of the 

majority is used to update the learner’s weights. The learners 

with the least weights in the current ensemble are saved in 

ELM-store to cope with the recurring concept. Any classifier 

in the store that performs better than the current ensemble 

indicates that the concept has occurred again, and the best 

classifier is added to the current ensemble. Both threshold and 

hypothesis tests [12] based drift detection methods are used 

subsequently to cope with abrupt and gradual drifts. 

However, this method handles the static imbalance with the 

concept drift problem (CI-CD). 

 The cost-sensitive adaptive random forest (CSARF) 

proposed in [19], is a variant of ARF. In CSARF, matthews 

correlation coefficient (MCC) assigns weights to each tree in 

the ensemble instead of accuracy. A sliding window was 

introduced to eliminate the problem of not presenting 

minority class instances for some ensemble classifiers. The 

learning process is modified so that each tree is trained with 

minority class samples. Cost sensitivity assignments can be 

done with local (CSARF-local) or global (CSARF-global) 

strategies. CSARF-local uses misclassification costs to 

influence the output of the base classifiers before the 

combination of votes is considered. In contrast, CSARF-

global uses the final mix of votes from all the decision trees 

but not individually. 

2.2 Dynamic class imbalance (i.e., imbalance drift) 

 Wang et al. [8] proposed several resampling-based 

ensemble methods by extending online bagging, such as 

weighted online bagging, undersampling, and oversampling 

online bagging (OOB and UOB), to cope with the CI-CD 

problem. Here the oversampling and undersampling rates for 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 10 Issue: 8 

DOI: https://doi.org/10.17762/ijritcc.v10i8.5665 

Article Received: 10 June 2022 Revised: 15 July 2022 Accepted: 30 July 2022 Publication: 31 August 2022 

___________________________________________________________________________________________________________________ 

 
18 

IJRITCC | August 2022, Available @ http://www.ijritcc.org 

online bagging are directed by time decay class size. Inline, 

sukarna et al. [20] proposed a generalized oversampling-

based online imbalanced learning framework (GOS-IL) for 

online learners to handle p(y) drift. 

 

2.3 p(y/x) drift detection methods 

 From [3, 21], as the p(y/x) drift is prone to class 

imbalance problem, several approaches to detect p(y/x) were 

proposed. Without prior imbalanced treatment, the drift is 

biased towards the majority class [3, 21]. The solutions that 

are proposed are the drift detection method online class 

imbalance (DDM-OCI) [21] is a modification to DDM [22]. 

Unlike DDM, whose concentration is on change detection on 

overall error rate, DDM-OCI tracks true positive rate (TPR) 

changes. Instead of only tracking changes in TPR, a linear 

four rate tracking mechanism for drift detection is proposed 

[23]. The drift signal is activated if a significant change in any 

rate updates is detected. Brzezinski and stefanowski [24] 

proposed a prequential AUC-based drift detection 

mechanism that recognizes the drift in prequential AUC by 

the page-hinkley test. In [25], a two-layer drift detection 

method is proposed. Layer 1 incorporates LFR, layer 2 is 

based on the permutation test, and both are supervised. 

However, the high degree of imbalance nullifies the target 

class performance, making it challenging to identify the drift. 

 Wang et al. extended AUC as prequential multi-

class AUC (PMAUC), weighted AUC (WAUC), and equal 

weighted AUC (EWAUC) for multi-class classification [26]. 

A heterogeneous dynamic weighted majority (HDWM) [27] 

is proposed to add a new base learner to the current ensemble 

whenever performance degradation is observed. This base 

learner selection is made automatically from the pool of 

existing learners. It supports both active and passive 

approaches. Recently, in SDDM [28], statistical methods that 

identify distribution differences are used for drift detection. 

In [29], cluster-based distance methods detect recurring 

concept drifts. 

 Except wang et al. [8], the rest of the methods 

assume the stream evolves with the static imbalance and 

p(y/x) drift. However, this is an online bagging based 

ensemble that consumes more computational cost. On the 

other hand, the support vector machine (SVM) proved less 

sensitive to the class imbalance problem [20]. As imbalanced 

evolving data streams are considered, the SVMs are not well 

investigated. Therefore, this work has developed an online 

active learning-based oversample hybrid SVM to cope with 

evolving imbalanced streams. However, undersampling is not 

studied. A shift in decision boundary [30] happens due to 

information loss [31]. Table 1 shows the summary of all the 

related works. As there are limited contributions and 

primarily ensemble approaches, this work focuses on a single 

classifier based solution to address the combined problem 

(CI-CD).

 

Table 1 Summary of all the related works 

Method Type of Learning State of Imbalance Drift Drift Detection 

Batch Online Static Dynamic p(y/x) p(y) Active Passive 

[13] ✓  ✓  ✓   ✓ 

[14,15] ✓  ✓  ✓   ✓ 

[16] ✓  ✓  ✓  ✓  

[17] ✓  ✓  ✓  ✓  

[18] ✓  ✓  ✓   ✓ 

[5,6]  ✓ ✓  ✓   ✓ 

[7] ✓ ✓ ✓  - -  ✓ 

[9] ✓ ✓ ✓  ✓  ✓  

[12] ✓ ✓ ✓  ✓ ✓ ✓  

[19] ✓  ✓  - -  ✓ 

[8]  ✓ ✓ ✓  ✓  ✓ 

[20]  ✓ ✓ ✓  ✓  ✓ 

[21]  ✓ ✓  ✓  ✓  

[23] ✓ ✓  ✓ ✓ ✓ ✓  

[24]  ✓ ✓ ✓ ✓ ✓ ✓  

[26]  ✓ ✓ ✓ ✓ ✓ ✓  

[27] ✓  ✓  ✓  ✓ ✓ 

[28] ✓  ✓  ✓  ✓  

[29] ✓  ✓  ✓  ✓  
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3 Motivation and Background 

3.1 Motivation 

 Generally, active learning methods are used to 

reduce annotation costs [32]. Unlike active learning with 

other learners, active learning with SVM (AL-SVM) selects 

the informative samples closest to the current model’s 

hyperplane [11, 33] incrementally. Due to this behavior, AL-

SVM is used as an informative undersampling criterion [34] 

for solving standalone class imbalance problems.  

 However, the SVM active learning with standard 

SVM tools [35, 36] is computationally expensive as it is 

needed to solve the optimization from the beginning for each 

boundary update. In contrast, the LASVM (large scale 

support vector machine) [37] speeds up this process by 

simply extending from the previous α values. In this paper, 

the LASVM is tailored to address the following issues in 

evolving streams: 

i) Static class imbalance: The rate of change of imbalance is 

static throughout the stream. 

ii) Dynamic class imbalance (i.e., imbalance drift p(y)): The 

rate of change of imbalance varies with time, and sometimes 

the minority class becomes the majority and vice versa. 

However, this dynamic state of change of imbalance 

undergoes abrupt and gradual speeds. Here it is referred to as 

imbalance drift.  

 To address the above issues, the work proposes 

hybrid oversampling-based asymmetrically weighted 

LASVM (WOOLASVM) for solving the CI-CD problem. 

3.2 Background 

 Given a training set  𝑇(𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈

𝑌{𝑌 = 1 𝑜𝑟 − 1}, the support vector machine (SVM) [38] 

describes an optimal hyperplane as described in equation 1. 
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Where w is the norm of the hyperplane, b is the intercept of 

hyperplane from the origin, xi is the input vector, yi is the 

corresponding class label, ϵ is the slack variable for handling 

nonlinearity, and C is the tuning parameter for 

corresponding loss function of misclassification cost. 

Generally, equation 1 is solved by convex quadratic 

programming (QP). The sequential minimum optimization 

(SMO) [39] is widely used for solving this QP and works 

based on the principle of directional search in identifying a 

τ - violating pair. Here τ is the tolerance on the gradients of 

the pair (i, j), gi− gj>τ where g represents the corresponding 

gradient. The SMO halts when there is no such τ - violating 

pair, and the final equations after solving QP are: 
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α ′s with non-zero values formulate the boundary for SVM 

and are called support vectors (SVs). In the case of 

incremental learning, methods such as active learning [11] 

take out this as an advantage and incrementally update the 

boundary by querying the unseen samples that are exactly 

nearer to the current decision boundary. The queried 

samples become the support vector for the new boundary. 

For each of this updation, using SVM tools based on SMO 

optimizer solves the QP from the beginning by assuming the 

training set as the new. Hence, these tools are not suitable to 

scale large data sets. However, LASVM [37] Process the new 

sample by adding it to the current support vector set S. Next, 

it ReProcesses by eliminating some blatant nonsupport 

vectors from S. 

 For every occurrence of the new sample, processing 

and reprocessing of the boundary, i.e., updating the support 

vector set S occurs. The optimization phase extends the 

gradient and α computations from previous α values and S, 

which SMO computes. In the Process step of LASVM, at 

first, the new instance k is added to S. Then search is being 

carried out for (i, j) in S, which could satisfy the τ - violating 

pair condition with maximum gradient and using directional 

search, α ′ s, gs are updated. If (i, j) is not a τ -violating pair, 

it is bailed out from S. Equations 4 and 5 depict the new 

gradient initialization and τ -violating pair identification. 

𝑔𝑘 = 𝑦𝑘 − ∑ 𝛼𝑠𝑠∈𝑆 𝐾𝑠                                                   (4) 

                                           i =

{
𝑘, 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆𝑔𝑠 𝑤𝑖𝑡ℎ ∝𝑠> 𝐴𝑠  yk = +1

𝑘, 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆𝑔𝑠 𝑤𝑖𝑡ℎ ∝𝑠< 𝐵𝑆         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                

(5) 

 The ReProcess step of LASVM removes any other 

nonsupport vectors from S. It initially searches for τ -

violating pair from S with maximum gradient. Then, the 

directional search is carried out to update α ′ s, gs. During 

this process, the identified blatant nonsupport vectors are 

removed. 
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{
 
 

 
 
i = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆𝑔𝑠  𝑤𝑖𝑡ℎ ∝𝑠< 𝐵𝑧 , j = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆𝑔𝑠 𝑤𝑖𝑡ℎ ∝𝑠> 𝐴𝑠

∀𝑠 ∈ 𝑆: 𝛼𝑠 = 0

𝑆 = {
𝑆 − {𝑠}𝑦𝑠 = −1⋂𝑔𝑠 ≥ 𝑔𝑖

𝑆 − {𝑠}𝑦𝑠 = +1⋂𝑔𝑠 ≤ 𝑔𝑗

 

                                                                                                                                                   

(6) 

The final computation of bias b, the gradient of most τ - 

violating pair in S, △ are calculated as 

                                                            𝑏 =
(𝑏𝑖−𝑏𝑗)

2
, ∆=

(𝑏𝑖 − 𝑏𝑗)                                            (7) 

  

 Therefore the learning is faster, and the boundary 

adaptively changes with the new data samples. Usually, in 

standalone training sets, to cope with imbalance, the 

boundary of the SVM is weighted with costs to prioritize 

better minority class prediction. The cost–sensitive SVM 

formulation of class imbalanced problems is in [40]. The 

cost parameters ‘C’ of SVM (equation 1) is further 

subdivided into C+ and C− are weighted asymmetrically. 

Based on the imbalance ratio, higher weights are given to 

the cost parameters C+ than C− (Equation 8) 

                                                                     min
𝑤,𝑏,𝜉𝑖

1

2
𝑤.𝑤𝑇 +

𝐶+ ∑ 𝜉𝑖
𝑁

𝑖=1 + 𝐶−∑ 𝜉𝑖
𝑁
𝑖=1                          

(8)                                                                                                                     
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4 WOOLASVM 

            However, from wu et al. [41], the SVM on highly 

imbalanced datasets results in a skewed boundary. As the data 

becomes more skewed, so does the ratio of positive to 

negative support vectors. This leads to poor minority class 

performance. However, these conclusions are still valid for 

SVM online learning with imbalanced evolving streams. In 

addition to this, there are other challenges with evolving 

streams. The entire distribution parameters may not be 

available prior. Whenever the underlying distribution 

changes with time, i.e., the data at a time (t-1) may not be 

valid at t (as per p(y) change). To cope with this combined 

issue, a weighted online oversampling based large scale 

support vector machine (WOOLASVM) is proposed in this 

paper. For WOOLASVM, the boundary of the LASVM is 

weighted in two folds:  

(1) Oversample the SVM boundary with respect to the 

imbalance ratio of current time t.  

(2) The asymmetric cost parameters of the SVM objective 

function (equation 8) C+ and C− are weighted with dynamic 

cost weighing factors w+, w−. These weighing factors reflect 

the current state of imbalance in the stream at time t. 

               Figure 1 illustrates a sample scenario of 

WOOLASVM, and algorithm 1 shows its pseudo-code. 

Initially, an imbalance boundary is assumed with at most a 

single minority and few majority samples for the learner (see 

figure 1(a)). To classify the class yt of a test sample            < 

xt, yt >, the initial training set < xt−1, yt−1 > is balanced by 

oversampling [42] half the pathway between minority class 

and majority class samples using half_generate_synthetic ( 

xmin, ymin, xkmaj , ykmaj , d) function where d indicates the current 

degree of imbalance (i.e., 
𝑁𝑜.𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑁𝑜.𝑜𝑓 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠   
). This formulates a 

balanced boundary (see figure 1(b)). The following incoming 

sample is predicted on this newly formulated balanced 

boundary (see figure 1 (c)) and then appended to the support 

vector set using the Process step (see figure 1(d)). Then the 

latest boundary is polished by pulling out some blatant 

nonsupport vectors using ReProcess step (see figure 1(e)). 

         Due to these repeated steps of Process and ReProcess, 

the boundary goes imbalanced (see figure 1(e)). To alleviate 

this problem, the boundary is further asymmetrically 

weighted (C+, C−) with the class-specific weighing factor wk 

(i.e., w+, w− and +, – are related to positive and negative class) 

with respect to current time t. w+, w− are calculated using 

equation 9. 

𝑤𝑘
𝑡 = 𝜃𝑤𝑘

𝑡−1 + (1 −  𝜃)[(𝑦𝑡 , 𝑐𝑘)]     k=1,2...n          

(9) 

Here [< yt, ck >] = 1 when yt=ck otherwise 0, k represents the 

corresponding class. The θ acts as the forgetting factor (0 < θ 

< 1) that enforces more weight on the samples of current 

significance than the older ones. These weights are used to 

weigh the cost parameters of equation 8. Based on imbalance 

drift, if w+ < w− then C+ is weighted with
   𝑤− 

  𝑤+ 
, or else C− is 

weighed with 
 𝑤+ 

 𝑤_ 
 and counterpart becomes 1. This sort of 

weighing minimizes the impact of class imbalance related to 

past data on equation 8.
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Figure 1 Example scenario with WOOLASVM 

  

For further boundary refinements, apart from the 

asymmetric weighing SVM objective function, the dynamic 

oversampling is based on the current imbalance drift in the 

stream. If nsvt− > nsvt+ or vice versa happens where nsvt 

contains the total support vectors at a time t, then 

generate_synthetic (xmin, ymin, xkmaj, ykmaj, d) is called. This 

function generates synthetic minority samples around the 

current support vectors to bridge the difference between 

nsvt−, nsvt+. WOOLASVM’s operational model is as 

follows: 

Step 1: To avoid skewness (see Figure 1(a)), the boundary 

is balanced by oversampling minority samples half the 

pathway between minority and majority samples. The 

Process (New TrainingSet) adds these generated samples to 

the existing support vector set. Figure 1(b) shows the 

formulation of the new balanced boundary. Using training 

set samples, a confusion matrix is created.  

Step 2: The new samples in the evolving stream are 

predicted over this balanced boundary (see Figure 1(c)). 

Performance evaluation indicators are updated accordingly. 

Based on the imbalance drift, cost parameters (i.e., C+ and 

C−) are calculated from cost weighing factors (i.e., w+ and 

w−). If w+< w- then C+ is weighed with  
 𝑤− 

 𝑤+ 
 otherwise C− is 

weighed with 
 𝑤+

 𝑤−
 and counterpart becomes 1. The current 

sample is now appended to the SVs set through Process 

(<NewSample >, < C+, C−>) which results in the next model 

(figure 1(d)). 

Step 3: The new model is updated using ReProcess ((< 

NewModel >, <C+, C->)) function to remove blatant 

nonsupport vectors (See Figure 1(e))). After removing the 

blatant nonsupport vectors, the new boundary may become 

imbalanced (see Figure 1(e)). As it is online learning on the 

imbalance stream, there may not be enough minority samples. 

Pulling out a single minority by ReProcess has a major 

impact.  

Step 4: At current time t, the positive class may become the 

majority or minority as the stream emerges with a dynamic 

degree of imbalance d. This is addressed by creating d 

artificial SVs focused around minority class SVs (positive or 

negative). If (nsv+ < nsv-) then artificial samples are created 

across positive class else across the negative class. At the end 

of each ReProcess, the positive class and negative class SVs 

(nsv+, nsv−) are updated and can be obtained by [nsv+, 

nsv−]=get_sv(New Model). 

Step 5: Calculate new <C+, C->. As the minority samples are 

generated synthetically, to manage the penalty, the SVs 

imbalance ratio is assigned for the cost parameter. The latest 

boundary is generated with the artificial samples by 

NewModel = Process (< synth_data >, <C+, C->) (See 

Figure 1(e) to 1(c)). Steps 2 through 5 are repeated until the 

last sample is obtained. 

 In LASVM, the Process and ReProcess steps end up 

with an imbalanced boundary. In contrast, the initial 

boundary is balanced through generating synthetic samples 

half the pathway between minority and majority SVs and in 

further boundary updates, based on the current state of 

imbalance (both static and dynamic) oversampling around the 

SVs as well as the asymmetric weighing of the objective 

function takes place to enrich the minority class prediction in 

WOOLASVM. Thus WOOLASVM enables better minority 

class prediction over balanced boundaries than LASVM. 

Algorithm 1 WOOLASVM 
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Input: < xi , yi > training set with degree of imbalance d,  

 < xmin, ymin > are corresponding minority samples,  

 < xmaj , ymaj > are corresponding majority samples,  

           + is positive class and - is negative class 

Output: GMean and Recall

  1: for each minority sample in < xi, yi >  

 2: synth_data = half_generate_synthetic (< xmin, ymin >, < 

xkmaj, ykmaj >, d) 

3: New Traningset= [< xkmaj, ykmaj >, < xmin, ymin >, < 

synth_data >]  

4: New Model=Process (New TraningSet)  

5: [nsv+, nsv−] = get_sv (New Model) 

6: while samples do 

7:  Obtain < xt, yt > from the evolving stream 

8:  Classify < xt, yt > on New Model 

9:  Compute Recall and GMean 

10:  Compute < w+, w− > using Equation 9  

11:  if (w+ < w− > then  

12:   C+= 
w−

   𝑤+     
    and    C−=1  

13:  else if (w− < w+) then  

14:   C−=
w+

   w−       
  and C+=1 

 15:  else  

16:  C+=1 and C−=1  

17:  end if 

18:  New Model=Process (< xt, yt >, < C+, C− >) 

 19:  Update New Model=ReProcess (New Model, < C+, 

C− >)  

20:  Repeat ReProcess until δ ≤ τ 

21:  [nsv+, nsv−] = get_sv (New Model) 

22:  if (nsv+ < nsv−) then  

23:   d=
nsv− 

nsv+ 
  

24:   synth_data = generate_synthetic (< x (sv+), 

y(sv+) >, < x(ksv+), y(ksv+) >, d) 

25:   C+= 
nsv− 

nsv+ 
  and C−=1 

26:  New Model=Process (< synth_data >, < 

C+, C− >) 

27:  end if 

28:  if (nsv- < nsv+) then  

29:   d=
nsv+ 

nsv− 
  

30:   synth_data = generate_synthetic (< x(sv-), 

y(sv-) >, < x(ksv-), y(ksv-) >, d) 

31:   C-= 
nsv+

nsv− 
  and C+=1 

32:  New Model=Process (< synth_data >, < 

C+, C− >) 

33:  end if 

34: end while 

 

 

 5 Experimental Results and Discussion 

 The proposed algorithms are validated on the four cases of 

imbalance with p(y) and p(y/x) drifts over synthetic and real-

world streams. The synthetic data generation procedure for 

four cases of imbalance is described below: 

5.1 Data set Preparation 

Case (i): Static class imbalance streams, generated by 

constant imbalance ratio throughout the stream.  

Case (ii): Dynamic class imbalance streams, generated by 

minority class percentages that vary with respect to time, i.e., 

imbalance drift (p(y)). The sudden imbalance drift starts 

exactly in the middle of the stream, and the gradual drift 

continues after the middle of the stream till 300 time steps of 

stream size 1000.  

Case (iii): Static class imbalance streams with p(y/x) drift, 

generated by constant imbalance ratio throughout the stream, 

abrupt concept drift starts exactly in the middle of the stream 

and gradual starts in the middle of the stream, and continues 

after the middle of the stream till 250 time steps of stream size 

1000.  

Case (iv): Dynamic class imbalance streams (i.e., p(y) with 

p(y/x) drift), generated with varied imbalance ratios, both the 

imbalance and concept drift start exactly in the middle of the 

stream, and in gradual case, drift (both imbalance and concept 

drift) start at the middle of the stream and continues till 250 

time steps of stream size 1000. 

 Different synthetic data streams are generated for 

the above four cases with different minority class 

percentages, say 10%, 20%, 30%, 40%, and 50%. The total 

number of data streams generated for experimentation in this 

work is 141. The size of each synthetic data stream is fixed to 

1K. The real-world data sets are COVER TYPE, SHUTTLE, 

SMART BUILDING, and ELECTRICITY. The size of 

COVER TYPE is 5, 81,012 with 1% imbalance percentage, 

and it is a multi-class dataset. Binary class classification 

problem is considered in this work. Multi-class datasets are 

converted to binary class by selecting the category with the 

smallest number of instances as minority and the rest as 

majorities. Table 2 depicts the characteristics of the datasets 

used in this work. The synthetic data streams are generated 

using a framework such as MOA [43] and minku et al. [44]. 

 

5.2 Experimental Settings 

 The evaluation prequential [45] of individual class 

Recall and classifier GMean are used as performance 

indicators. As two-class information is necessary, the 

WOOLASVM is initially given an input with nine instances 

where eight instances are negative, and one is positive, 

assuming that there is only a sample available at initial 

training. Proposed WOOLASVM is compared with the 

online bagging method OOB [8], which handles the online 

dynamic CIL problem. However, the dynamic CIL problem 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 10 Issue: 8 

DOI: https://doi.org/10.17762/ijritcc.v10i8.5665 

Article Received: 10 June 2022 Revised: 15 July 2022 Accepted: 30 July 2022 Publication: 31 August 2022 

___________________________________________________________________________________________________________________ 

 
23 

IJRITCC | August 2022, Available @ http://www.ijritcc.org 

is concerned, OOB is a benchmark approach. In 

WOOLSAVM w+, w− are set to corresponding class weights 

at time t, and the forgetting factor θ is set to 0.9. According 

to [3, 21], an explicit drift detection method is required for 

OOB to cope with the CI-CD learning problem. However, to 

compare the p(y) and p(y/x) drift adaptation between the 

algorithms, the drift detection methods [2] are not considered 

in this study. Further, the proposed approach is compared 

with baseline LASVM, hoeffding adaptive tree (HAT), and 

leverage bagging (LB) methods. For LB and HAT, hoeffding 

trees are used as base classifiers and are considered from the 

MOA [43]. Evaluation prequential of individual class Recalls 

and GMean are taken from the MOA. To represent individual 

class performance, the evaluation prequential Recall is 

presented in graphs. For overall classifier performance, the 

average±standard deviation of GMean for each data stream 

is reported in tables.

 

Table 2 Datasets description 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Results and Discussion 

Case 1:  

 Figure 2 presents the impact of class imbalance on 

WOOLASVM performance using the STAGGER stream by 

varying the percentages of imbalance ratio ranging from 10% 

to 50%. Here, the performance is measured in terms of 

evaluation prequential of minority class Recall and GMean 

and compared with the other methods considered. From 

Figure 2, it is observed that irrespective of the imbalance 

ratio, the WOOLASVM exhibits better performance 

compared with other methods. As the percentage of the 

minority class increases, i.e., from 10-50%, the performance 

of all the considered algorithms increases significantly from 

the ground. The WOOLASVM exhibited more than 70% 

minority class Recall. The GMean is close to 90%, even at a 

degree of higher imbalance ratios such as 10%. Similar kinds 

of results are observed for the remaining datasets. Figure 3 

depicts the WOOLASVM’s performance on real-world 

imbalance streams such as SHUTTLE, which is highly 

imbalanced (10%). In this extreme case of imbalance stream, 

the WOOLASVM wins over other considered methods. From 

Figure 3, it is observed that OOB and HAT performance is 

grounded and not able to rise as the stream progresses with 

time. The performance of LB is nearly zero at the beginning, 

and later continuous improvement in the performance is 

observed. The LASVM families of algorithms are not more 

sensitive to evolving class imbalance than other methods. 

 

 

 

 

 

Dataset Size No.of Attributes  % of Minority Class 

CIRCLE 1K 2 10%,20%,30%,40%,50% 

LINE 1K 2 10%,20%,30%,40%,50% 

SEA 1K 3 10%,20%,30%,40%,50% 

SINEV 1K 2 10%,20%,30%,40%,50% 

SINEH 1K 2 10%,20%,30%,40%,50% 

STAGGER 1K 3 10%,20%,30%,40%,50% 

AGARWAL 1K 9 10%,20%,30%,40%,50% 

COVERTYPE 581K 54 1% 

SHUTTLE 58K 9 10% 

SMART   BUILDING 5K 14 1% 

ELECTRICTY 45k 4 40% 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 10 Issue: 8 

DOI: https://doi.org/10.17762/ijritcc.v10i8.5665 

Article Received: 10 June 2022 Revised: 15 July 2022 Accepted: 30 July 2022 Publication: 31 August 2022 

___________________________________________________________________________________________________________________ 

 
24 

IJRITCC | August 2022, Available @ http://www.ijritcc.org 

   

  

 

Figure 2 Minority class Recall prequential for the stream size 1K on static imbalance streams for STAGGER dataset. 

 

 
 

Figure 3 Minority class Recall prequential and GMean for the stream size 58K for SHUTTLE dataset. 

 

 Table 3 shows the comparison of WOOLASVM 

with other algorithms on various synthetic and real-world 

streams. The winning performance is boldfaced. The OOB, 

LB, and HAT underperformed compared on static 

imbalanced data streams to LASVM, and WOOLASVM. On 

synthetic streams, at a higher degree of imbalance such as 

10% and 20%, and moderate degrees of imbalance such as 

30% and 40%, WOOLASVM performance is higher than that 

of LASVM. In most static imbalanced cases, the 

WOOLASVM performance is better than the rest. On 

balanced class percentages, LB better performed than the 

other algorithms. 

 As the real-world datasets are concerned, on 

SHUTTLE and SMART BUILDING, WOOLASVM 

exhibited superior performance. However, on COVER 

TYPE, LASVM has been the winner. This might be due to 

the large stream size, which could be enough to formulate a 

well-separated boundary. The other two online learners, such 

as HAT and LB, also exhibited a similar trend of acceptable 

performances. To rank the considered online learners based 

on the overall performance of synthetic and real-world data 

streams, a statistical nemenyi test is carried out. Figure 4 

shows the nemenyi post hoc test with a critical 

distance=1.062. The WOOLASVM achieves the highest 

performance rank of 4.23, as shown in the figure. However, 

OOB intended to solve the dynamic class imbalance problem 

secured the lowest rank of 1.56 and was significantly distinct 

from WOOLASVM in GMean performance.
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Figure 4 Nemenyi test for static class imbalance streams 

Main observations:  

1. The WOOLASVM performance is better than other 

algorithms irrespective of the degree of imbalance on 

synthetic and real-world static imbalanced data streams.  

2. With other algorithms, the performance increases as the 

minority class percentage increases. The same is observed 

with LASVM and even for OOB. 

 

Case 2: 

 Figure 5 shows the WOOLASVM performance in 

the case of dynamic class imbalance streams (imbalance drift, 

i.e., p(y)). The performance is reported in class-specific 

Recalls such as positive (1), negative (-1), and their 

corresponding GMean for varying percentages of minority 

class distribution in the evolving stream because both classes 

change their state of imbalance over time. Here it is assumed 

that the stream evolves with dynamic change in minority class 

percentages but is prone to imbalance drift in the middle of 

the stream. Both abrupt (a) and gradual (g) speeds of 

imbalance drifts are considered here. 

 Compared to the negative class, the positive class 

performance is more prone to imbalance drift problems 

(figure 5). As the minority class percentage increases in the 

distribution, the impact of imbalance drift decreases in terms 

of a learner’s performance improvement. As the minority 

becomes the majority in imbalance drift cases, there is a 

sudden increase in performance. This change is significant for 

a higher degree of imbalance of minority class cases such as 

[10%, 20%, and 30%]. Concerning the negative class, the 

impact of dynamic CI is less due to prior good training. As 

GMeans is considered, the impact of imbalance drift is more 

on a higher degree of imbalance of minority class than 

moderate and balanced cases. This trend is observed the same 

for all considered data streams.

 

Table 3 Average GMean for static class imbalance streams 

Dataset (a) (b) (c ) (d) (e) (f) 

 

 

CIRCLE 

10% 0±0  0±0  0±0  29.8±10.9  58.1±9.8 

20% 0±0  30.9±17.4  15.9±9.2  45.9±9.9  63.7±5.1 

30% 57.4±2.6  50.6±27.1  43.3±23  72.2±4.6  61.3±7.3  

40% 81.7±0.9  73.5±15.2  76.8±7.08 82.4±2.8 74.13±3.7 

50% 92.6±10.6 95.4±5.02 93.8±7.4 96.6±1.8 85.5±2.6 

 

 

LINE 

10% 0±0 11.2±7.1 3.1±5.1 35.4±15.3 59.9±7.8 

20% 1.2±3.8 41.4±22.7 26.6±15.1  50.1±9.6  70.1±6.7 

30% 43.5±3.2  60.4±30.6  52.9±27.2  69.7±4.4  71.5±3.8 

40% 56.9±0.6  79.2±15.6 76.7±16 84.6±2.4 74.9±3.3 

50% 67.9±1.02  97±3.1 96.4±2.9 96.6±1.8 94.2±2.9 

 

 

SEA 

10% 0±0  11.9±7.8 11.9±7.8 39.9±33.1 92.1±5.2 

20% 0.4±0.04  38.1±19.8 23.3±13.4 41.8±30 96.3±3.1 

30% 1.9±0.1  48.7±24 40.3±21 42±28 96.1±3.3 

40% 5.5±0.11  70.2±12.5 46.3±11.8 43.9±25.4 96.8±4.7 

50% 19.9±0.4  90.6±4.9 90.4±3.8 82.3±9.3 78.2±6.9 

 

 

SINEV 

10% 0±0  11.9±7.8 12±7.8 14.7±15.1 38.9±12.6 

20% 0±0  39.5±20.7 29.8±16 23.5±13.8 56.8±7.3 

30% 13.3±4.2  55.2±28.8 42.3±24.5 35.2±12.3 62.4±6.6 
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40% 34.5±1.1  75.1±13.9 72.3±15.3 50.9±11.7 77.5±4.5 

50% 64.3±21.2  95.5±3 93.8±4 60.1±16.8 68.9±11.23 

 

 

STAGGER 

10% 10.4±3.5  15.7±8.9 0±0 65.7±18.4 88.7±5.8 

20% 26.1±0.9  38.8±20.7 0±0 78.9±11.5 88.7±6.05 

30% 56.2±0.9  59.1±28 39.8±23.4 82.1±8.8 93.8±3.2 

40% 67.3±0.04  73.8±11.7 70.5±17.1 89.9±5.6 92.8±4.3 

50% 97.03±0.7  92.3±5.1 96±4.8 99.6±0.5 99.6±0.5 

 

 

AGARWAL 

10% 0±0  5.3±8.7 15.8±15.5 75±15.3 88.±6.7 

20% 13.1±3.1  28.4±15.3 11.3±6.5 77.7±12.8 87.9±6.7 

30% 30.3±2.1  41.5±22 38.1±19.6 73.4±12.9 91.4±4.4 

40% 50.8±1.6  59.4±28.2 57.8±27 75.6±10.7 92.2±4.3 

50% 80.7±1.8  85.4±6.3 82.2±7 71.7±5.1 63.9±5.9 

COVER TYPE 1% 26.5±0.3  82.3±5.1 90.6±6.1 93.7±1.2 91.9±1.3 

SHUTTLE 10% 0±0  46.5±27.5 0±0 91.8±3.9 94.7±2.3 

SMART BUILDING 1% 0±0  56.2±17.9 16.2±19.3 30.9±11.1 47.3±15.1 

Note: (a): % of Minority Class (b): OOB (c): LB (d): HAT (e): LASVM (f): WOOLASVM 

 

   

Figure 5 Recall prequential and GMean for the stream size 1K on dynamic class imbalance streams for LINEa dataset. 

 

 Figure 6, 7 shows the WOOLASVM performance 

on imbalance drift problems compared to considered 

algorithms on SINEVa, g streams at a high degree of 

imbalance (10%). In this scenario, it is observed that 

WOOLASVM better copes with imbalanced drift compared 

to the other considered algorithms. From class 1 (minority 

before the imbalanced drift and majority after) in terms of 

minority class Recall, except for the LASVM family, the rest 

of the performance of the other algorithms is grounded before 

the imbalance drift and raised afterward. The same trends are 

observed for both abrupt and gradual drifts. However, 

regardless of the change from majority to minority, the 

influence of the imbalance drift on all algorithms is negligible 

for class -1. The ability of all algorithms to deal in later stages 

was aided by sufficient learning of samples relevant to class 

-1 prior to the change. However, OOB is still observed to be 

grounded after the imbalance drift. Similarly, the GMean 

performance curve was similar to the class 1 Recall. 
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Figure 6 Recall prequential and GMean for the stream size 1K on dynamic class imbalance streams for SINEVa 10% dataset. 

 

   

Figure 7 Recall prequential and GMean for the stream size 1K on dynamic class imbalance streams for SINEVg 10% dataset. 

 

Table 4 shows the findings on seven synthetic streams with 

the imbalance drift problem. Here the validation is carried out 

only with synthetic data streams, as it is hard to find the real-

world stream in this setting. At higher degrees of imbalance 

(i.e., 10% and 20%), WOOLASVM performed well 

compared to other algorithms. The LASVM is the second 

performer. Similar trends, like SINEVa, g are observed for 

all these considered data streams. To identify the statistical 

significance of all data streams over the considered algorithm 

nemenyi test is conducted over GMeans. From this test 

(figure 8), WOOLASVM yielded the best mean rank of 4.45. 

Here OOB secured a ranking of 1.61 among all, which is 

intended to solve the imbalance drift problem and is 

significantly different from WOOLASVM with a critical 

distance of 1.096, with better results. 

Main observations:  

1. WOOLASVM handles imbalance drift better than other 

algorithms.  

2. The dynamic imbalance treatment of WOOLASVM can 

adapt the changes to drift caused by imbalance drift. 

 

 

 
 

Figure 8 Nemenyi test for dynamic class imbalance streams 
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Table 4 Average GMean for dynamic class imbalance streams 

Dataset (a) (b) (c ) (d) (e) (f) 

 

 

CIRCLEa 

10% 0.7±0.3  27.1±32.9 8.3±9.8 49.4±22.7 68.1±9.7 

20% 0.4±0.1  39.1±24.9 19±11.04 57.9±13.9 66.09±5.2   

30% 48.7±2.7 50.2±26.7 48.7±7.8 73.1±4.9 64.9±7.1 

40% 69.9±0.9 67.8±12 65.5±10.5 80.8±2.4 74.4±3.6 

50% 78.6±0.5 84.3±12.1 80.2±14.9 95.4±1.3 83.5±2.3 

 

 

LINEa 

10% 0±0  32.7±28.5 29.3±35.6 56.4±18.9 68.9±9.3 

20% 1.1±3.4 47.5±26.7 40±18.8 62±11.05 74.2±5.7 

30% 40.8±3.03 56.2±28.3 43.1±26.6 69.6±4.4 72.9±3.5 

40% 55.4±0.6 74.1±12.2 60.6±8.7 82.02±2.5 73.1±4.1 

50% 67.9±1.02 85.7±11.2 85.9±9.1 94.7±2.03 91.7±2.4 

 

 

SEAa 

10% 2.7±0.4  31.2±27 14±9.3 45±30.9 90.9±5.8 

20% 20.3±1.1 42.1±23.3 16.6±10.2 50.3±26.1 91±5.3 

30% 40.7±0.2 48±23.8 35.7±19.1 56.7±20.7 93.7±4.2 

40% 51.9±0.3 65.9±10.6 59.4±11 64.5±16 93.8±4.4 

50% 74.9±0.6 79.6±11.6 78±13.7 72.6±11.6 72.8±6.18 

 

 

SINEVa 

10% 0±0 32±27.1 35.6±30.7 52.6±15.3 61.2±13.2 

20% 7.3±4.2  43.5±23.9 28.5±18 56.4±8.9 70.6±6.3 

30% 51.04±1.2 51.9±26.8 36.8±20.8 66.7±6.3 73.6±4.2 

40% 58.9±0.6 70.8±11.8 66.6±12.1 76.7±3.8 74.4±4.6 

50% 68.5±0.9 84.6±11.3 84±9.6 77.5±9.5 77.6±5.6 

 

 

STAGGERa 

10% 13.7±2.6  33±27.3 9.1±11.8 75.2±17.9 90.07±5.8 

20% 25.8±1.24 41.9±23.4 1.4±3.6 85.5±8.2 90.4±4.9 

30% 49.1±0.8 56.2±26.5 34.3±19.5 82.3±8.8 93.6±3.3 

40% 57.7±0.2 70.1±10 60.2±12.4 85.8±7.6 92.8±4.2 

50% 82.7±0.7 78.7±12.7 81.8±14.9 96.03±3.6 96.6±3.04 

 

 

AGARWALa 

10% 5.1±0.8 24.4±30.7 7.5±10.1 56.8±25.7 88.8±8.1 

20% 20.7±2.6 45.9±26.7 26.6±14.7 57.2±22.3 92.7±4.4 

30% 34.6±1.9 51.6±27.2 33.9±16.8 62.6±17.7 92.7±4.2 

40% 44.8±1.2 57.8±27.6 48.3±22.5 64.1±15.6 93.3±4.4 

50% 71.5±0.92  76.3±8.5 77.6±6.5 58.4±7.3 59.8±5.7 

SINEVg 10% 0±0 22.3±29.9 29.9±37.4 57.1±27.8 87.8±6.7 

Note: (a): % of Minority Class (b): OOB (c): LB (d): HAT (e): LASVM (f): WOOLASVM 

 

Case 3: 

 Figures 9, 10 depict WOOLASVM’s performance 

compared to other algorithms on static CI-CD problem 

illustrated using a STAGGERa stream at a high and balanced 

degree of imbalanced cases. Here, the stream is assumed to 

be evolving with static imbalance with concept drift in the 

middle of the stream. However, it is identified that at a high 

degree of imbalance cases such as 10%, the impact of the 

degree of imbalance is high on classifier performance. In 

more balanced cases, the impact of the concept drift looks 

vibrant. However, in both cases, WOOLASVM exhibits 

better performance than other considered methods. A similar 

trend is observed with eight synthetic and one real-world 

streams and with gradual and abrupt drifts. 

 Table 5 shows the average GMean performance in 

this scenario over eight synthetic streams and one real-world 

stream such as electricity for concept drift validation. On 

synthetic streams with various percentages of minority class 

at 10% and 20% cases, WOOLASVM performed well 

compared to other algorithms. At moderate minority class 

percentages, every classifier performed equally well. 

Considering the real-world dataset electricity, LASVM is the 

winner. The performance of WOOLASVM is next to 

LASVM. The HAT and LB performed equally well. In a few 

cases, OOB performed well than LB. Altogether, OOB 
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underperformed compared with other methods. However, 

though there is a performance drop at drifted positions, the 

Process and Reprocess steps through active learning enable 

the WOOLASVM and LASVM towards early adaption to 

concept drift. Again, the statistical significance of 

WOOLASVM concerning other algorithms is studied 

through the nemenyi post hoc test (see Figure 11). At critical 

distance CD=0.953, the WOOLASVM secured a 4.29 

ranking, significantly different from OOB. 

Main observations:  

1. Streams at a higher degree of imbalance are prone to a 

static state of imbalance.  

2. The more balance the stream, the impact of p(y/x) drift is 

more.  

3. The active learning and imbalance treatment of 

WOOLASVM leads to early convergence from static CI-CD 

problems compared to other algorithms. 

 

   

Figure 9 Recall prequential and GMean for the stream size 1K on static class imbalance with p(y/x) drift for STAGGERa 10% 

dataset. 

 

  
 

Figure 10 Recall prequential and GMean for the stream size 1K on static class imbalance with p(y/x) drift for STAGGERa 50% 

dataset. 
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Figure 11 Nemenyi test for static class imbalance streams with p(y/x) drift 

 

Case 4: 

 Figures 12 and 13 demonstrate the Recall and 

GMean performance of the WOOLASVM algorithm in 

coping with dynamic CI-CD problems using the STAGGERa 

stream compared to other algorithms at a high and balanced 

degree imbalanced cases. Both concept and imbalanced drifts 

are positioned at the same instance (i.e., exactly in the middle 

of the stream). However, it is identified that at a high degree 

of imbalance cases such as 10%, the influence of the 

imbalance drift is high on learner’s performance than p(y/x) 

drift. In balanced cases, the impact of p(y/x) drift is vital. 

Compared to other algorithms, WOOLASVM better 

performed in coping with dynamic CI-CD problem and 

adapted early towards the p(y/x) drift. A similar trend is 

observed on nine synthetic streams with abrupt imbalance, 

gradual and abrupt p(y/x) drifts (See Table 6). 

 

Table 5 Average GMean for static class imbalance streams with p(y/x) drift 

Dataset (a) (b) (c ) (d) (e) (f) 

 

 

CIRCLEa 

10% 0±0  0±0 0±0 30.9±10.8 56.8±9.6 

20% 0±0  28.9±16.2 15.9±9.2 45.4±10.2 63.1±5.3 

30% 53.1±2.7  48.6±25.6 52.3±6.6 70.6±4.9 61.2±7.3 

40% 77±0.95  70.7±13.5 71.6±7.4 80.7±2.3 72.5±3.7 

50% 87.9±0.5  91.7±5.6 89.7±6.6 94.7±1.5 82.8±2.7 

 

 

LINEa 

10% 0±0  33.1±18.7 25.3±15.5 21.9±13.2 60.5±8.3 

20% 22.7±4.8  54.2±29 43.6±23.3 56.8±11.2 66.9±6.2 

30% 52.4±2.1  63.1±30.5 52.5±27.8 70.7±5.03 69.1±6.2 

40% 60.9±0.5  79.3±13.6 78±14.5 83.9±1.8 78.2±2.6 

50% 69.2±0.9  92.6±5 91.3±5.7 96.4±0.8 94.4±1.3 

 

 

SEAa 

10% 0±0  11.1±7 0±0 40.3±32.6 90.8± 5.3 

20% 20.2±1.9  31.5±16.9 20.2±12 50.5±25.1 95.4± 2.8 

30% 45.1±0.9  50.1±24.6 45.2±22.9 58±20.21 95.5±2.9 

40% 61.8±0.7 71.8±11 70.3±11.4 73.5±13.4 95.9±2.6 

50% 88.8±0.5  90.6±1.6 90.3±2.3 84.3±4.9 79.9±3.7 

 

 

SINEVa 

10% 0±0  26.4±15.2 15.8±10 17.4±14.3 29.3±13.1 

20% 1.4±1.1  54.7±29.4 36±20.2 28.8±11.7 49.8±7.2 

30% 34.9±1.7  63.5±31.6 52.9±27.7 41.1±9.6 58.9±6.3 

40% 42.4±0.8  78.6±15.8 15.8±10 59.6±8.1 67.7±6.2 

50% 65.3±20.8  88.9±5.3 86.7±6.3 70.03±9.1 76.9±4.9 

 

 

STAGGERa 

10% 10.4±3.5  14.01±8 0±0 65.3±18.6 87.8±6.4 

20% 26.1±0.9 35.2±19.1 0.08±0.9 82.2±9.9 92.4±3.9 

30% 50.9±0.8 53.8±25.6 33.8±19.2 81.5±9.03 93.9±3.2 
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40% 59.5±0.2 67.9±9.6 66.4±14.1 87.5±6.4 93.2±4.1 

50% 86.9±0.8 84.5±6.2 88.2±7.5 96.7±3 96.4±3.3 

 

 

AGARWALa 

10% 0±0    0±0 11.5±7.1 46.5±29.1 91.7±5.2 

20% 0±0 10.1±5.5 8.3±5 53.2±23.8 92.9±3.9 

30% 16.7±0.9 23.3±12.3 11.6±6.5 57.8±19.4 94.9±2.9 

40% 46.9±0.8 49.9±22.8 47.4±21.9 63.8±15.9 94.6±3.6 

50% 78.2±0.83 78.2±11.2 75.8±7.9 61.5±6.4 62.5±4.9 

 

 

SINEHg 

10% 0±0  0±0 0±0 56.2±23.8 89.4±6.1 

20% 11±1.7 73.3±13.7 3.7±6.3 64.3±18 89.5±5.9 

30% 29.2±1.1 47.4±25.1 34.3±18.4 71.5±13.8 91.5±4.9 

40% 37.6±1.7 59.9±28.2 62.3±12.9 79.1±9.7 94.4±4.2 

50% 63.2±4.9 81.1±2.3 80.6±2.2 80.4±11.7 82.8±5.9 

 

 

LINEg 

10% 22.3±2.6  33±18.7 25.3±15.5 78.1±12.3 81.8±8.4 

20% 36.2±0.5 52.7±28.5 42.3±23.2 78.8±10.7 93.7±3.5 

30% 26.5±6.9 63.4±30.6 53.3±28.1 94.03±4.1 90.5±3.1 

40% 35.03±1.4 80.2±13.8 79±14.8 90.7±4.7 90.1±2.2 

50% 69.6±0.9 94.5±4 93.2±5 96.6±1.8 95.5±2.5 

Electricity 40% 38.6±0.6  65.9±3.8 65.5±2.4 71.4±3.3 67.7±4.3 

Note: (a): % of Minority Class (b): OOB (c): LB (d): HAT (e): LASVM (f): WOOLASVM 

 

 
  

Figure 12 Recall prequential and GMean for the stream size 1K on dynamic class imbalance streams (i.e., p(y) with p(y/x) drift) 

for STAGGERa 10% dataset. 

 

   

Figure 13 Recall prequential and GMean for the stream size 1K on dynamic class imbalance streams (i.e., p(y) with p(y/x) drift) 

for STAGGERa 50% dataset. 
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From figure 14, it is clear that WOOLASVM is the winner 

with the 4.33 best ranking in the nemenyi post hoc test. 

However, the proposed WOOLASVM differs greatly from 

OOB in critical distance=0.964.  

Main Observations:  

1. On an imbalanced evolving stream, imbalanced drift has a 

significant impact.  

2. On balanced evolving streams, concept drift has a 

significant impact.  

3. Due to dynamic sampling and weighing, active learning 

WOOLASVM better copes with dynamic CI-CD problems 

than other methods. 

 

Figure 14 Nemenyi test for on dynamic class imbalance streams (i.e., p(y) with p(y/x) drift) 

 

6 Conclusion 

 This paper introduces the SVM active learning-

based weighted online learner WOOLASVM to address the 

combined problem of CI-CD. The main focus is dealing with 

the imbalance drift part of concept drift. Throughout the 

stream learning process, the WOOLASVM algorithm is 

proposed to maintain a balanced boundary. Here the balanced 

boundary is assigned in two folds.  

1. The initial boundary is balanced by creating artificial 

samples that are half the pathway towards minority class 

samples between minority and majority class SVs.  

2. The next formulating boundaries are again balanced in two 

ways. At first, asymmetrically weighing the cost functions 

based on the weights of the current data. This is to push the 

border towards the majority class to create a better space for 

minority class prediction. Further balanced boundary 

formulation, the minority class SVs are oversampled 

dynamically. Here the imbalance drift is handled by adjusting 

the boundary based on the weight difference between the 

minority to the majority or vice versa for dynamic 

oversampling between the SVs. 

 The experimental results were demonstrated on 

synthetic and real-world data streams in four different 

imbalance and concept drift settings.  

The main observations are:  

1. At a higher static degree of imbalance, the WOOLASVM 

converges to acceptable performance compared to the base 

LASVM active learning, LB, HAT.  

2. Proposed WOOLASVM exhibited better Recall and 

GMean performance in coping with imbalance drift (p(y)) 

than OOB.  

3. In a static state of imbalance, the WOOLASVM 

outperformed the LB and HAT in dealing with p(y/x) drift.  

4. The WOOLASVM handled static and dynamic imbalance 

better than LB, HAT, and OOB with p(y/x) drift. 

 

Table 6 Average GMean for dynamic class imbalance streams (i.e., p(y) with p(y/x) drift) 

Dataset (a) (b) (c ) (d) (e) (f) 

 

 

CIRCLEa 

10% 11.6±0.6  23.5±32.3 9.02±14.9 53.6±25.9 68.1±9.9 

20% 7.3±0.5 37.8±24.6 18±12.2 58.9±13.9 66.8±5.5 

30% 49.7±2.5 49.7±26.4 49.4±7.4 72.1±4.6 64.1±6.9 

40% 32.9±0.9 67.9±12.4 68.1±8.9 80.5±2.3 74.6±3.7 

50% 81.6±0.6 87.2±9.3 82.5±12.9 94.6±1.5 84.2±2.3 

 

 

LINEa 

10% 8.2±13.8  44.1±28.7 32.8±21.8 49.1±28.5 71.8±8.5 

20% 21.2±10.6 54±28.9 42.8±24.1 67.1±10.7 71.9±5.8 

30% 49.2±16.9 61.5±29.7 50.3±26.8 72.7±5.4 71.4±5.8 

40% 59.4±18.7 77.7±13.2 75.5±13.9 83.7±1.7 78.1±2.6 

50% 74.3±14.3 91.6±5.6 93.4±3.5 96±0.8 94.9±0.9 
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SEAa 

10% 9.5±0.7  31.8±28.5 9.02±12.2 48.1±29.1 93.4±4.2 

20% 21.7±1.8 38.4±22.9 23.3±13.2 54.3±23.6 95.5±2.71   

30% 39.8±0.95 50.8±25.2 39.6±20.7 57.9±20.2 94.9±3.3 

40% 51.9±0.6 68.8±9.4 60.6±11 69.6±13.8 95.03±3.2 

50% 76.1±0.5 79.7±12.4 78.1±14.2 75.1±9.6 75.1±5.5 

 

 

SINEVa 

10% 0±0  37±26.6 27.4±23.4 47.9±13.3 63.3±14.5 

20% 7.3±5.6 56±30 38.4±22.1 55.3±8.8 71.5±6.5 

30% 49.8±1.2 62±30.9 58.5±30.9 63.6±6.1 73.3±3.9 

40% 58.2±0.6 77.3±15.3 74.6±15.2 75.5±3.9 73.3±4.1 

50% 68.5±0.9 88.1±5.6 90.3±5.8 76.8±9.2 76.7±5.4 

 

 

STAGGERa 

10% 19.6±2.4  32.9±28.8 16.2±22.6 76.7±17.5 90.8±5.6 

20% 34.9±0.9 43.3±24.7 17.3±23.9 85.6±8.14 93.5±3.9 

30% 54.7±0.9 57.9±27.3 41.4±25 82.9±8.7 94.5±3.1 

40% 59.1±0.13 73.1±11.4 69.8±16.5 89.08±5.8 93.7±3.9 

50% 90.5±0.9 88.3±3.6 94±4.1 99.4±0.5 98.9±0.7 

 

 

AGARWALa 

10% 4.2±1.8  22.4±27.2 4.6±10 55.9±25.4 95.04±3.7 

20% 14.5±1.6 34.4±27.3 22±15 58±22.17 94.8±3.11 

30% 24.7±1.8 36.4±27.8 22±17.3 62.1±18.4 95.9±2.3   

40% 48.4±0.93 55.6±27.6 47.1±23.6 67.9±14.2 95.2±3.5 

50% 76.4±0.8 76.5±11.3 75.1±8 59.8±6.3 62.6±4.9 

 

 

SINEHg 

10% 5.7±0.3  24.9±32.3 7.8±13.1 62.9±21.5 93.3±4.7 

20% 18.3±1.4 34.4±25.4 13.4±18.1 65.3±17.6 91.7±4.7 

30% 27.5±2.2 47.8±25.3 37.5±21 69.7±14.3 91.9±4.6 

40% 36.2±1.6 57±26.7 59.6±10.9 76.3±10.5 94.1±4.3 

50% 63.2±4.9 77.3±5 75.8±6.3 75.3±9.7 79.4±4.8 

 

 

LINEg 

10% 20.5±2.1  44.1±28.8 24.4±17 84.9±9.7 85.5±6.6 

20% 30.9±0.4 55±29.4 40.6±23 82.5±9.8 93.1±3.4 

30% 24.4±6.4 61.3±29.7 52.4±27.7 94.1±3.9 90.9±2.8 

40% 33.9±1.4 78.2±13.4 77±14.2 90.7±4.7 90.1±2.1 

50% 69.5±0.9 93±5.1 94.1±3.4 96.5±1.9 95.3±2.6 

Note: (a): % of Minority Class (b): OOB (c): LB (d): HAT (e): LASVM (f): WOOLASVM 
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