7,275 research outputs found

    A design procedure for overlapped guaranteed cost controllers

    Get PDF
    © 2008 the authors. This work has been accepted to IFAC for publication under a Creative Commons Licence CC-BY-NC-NDIn this paper a quadratic guaranteed cost control problem for a class of linear continuous-time state-delay systems with norm-bounded uncertainties is considered. We will suppose that the systems are composed by two overlapped subsystems but the results can be easily extended to any number of subsystems. The main objective is to design overlapping guaranteed cost controllers with tridiagonal gain matrices for these kind of systems by using a linear matrix inequality (LMI) approach. With this idea in mind, we present a design strategy to reduce the computational burden and to increase the feasibility in the LMI problem. In this context, the use of so-called complementary matrices play an important role. A simple example to illustrate the advantages achieved by using the proposed method is supplied.Peer ReviewedPostprint (published version

    Overlapping guaranteed cost control for uncertain continuous-time delayed systems

    Get PDF
    Overlapping guaranteed cost control design problem is solved for a class of linear continuous-time uncertain systems with state as well as control delays. Unknown arbitrarily time-varying uncertainties with known bounds are considered. A point delay is supposed. Conditions preserving closed-loop systems expansion-contraction relations including the identical bounds of performance indices are proved. A linear matrix inequality (LMI) delay independent procedure is used for control design in the expanded space. The results are specialized on the overlapping decentralized control design. A numerical illustrative example is supplied.Peer ReviewedPostprint (published version

    A Novel Fuzzy Logic Based Adaptive Supertwisting Sliding Mode Control Algorithm for Dynamic Uncertain Systems

    Full text link
    This paper presents a novel fuzzy logic based Adaptive Super-twisting Sliding Mode Controller for the control of dynamic uncertain systems. The proposed controller combines the advantages of Second order Sliding Mode Control, Fuzzy Logic Control and Adaptive Control. The reaching conditions, stability and robustness of the system with the proposed controller are guaranteed. In addition, the proposed controller is well suited for simple design and implementation. The effectiveness of the proposed controller over the first order Sliding Mode Fuzzy Logic controller is illustrated by Matlab based simulations performed on a DC-DC Buck converter. Based on this comparison, the proposed controller is shown to obtain the desired transient response without causing chattering and error under steady-state conditions. The proposed controller is able to give robust performance in terms of rejection to input voltage variations and load variations.Comment: 14 page

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Design of robust structurally constrained controllers for MIMO plants with time-delays

    Get PDF
    International audience— The structurally constrained controller design problem for linear time invariant neutral and retarded time-delay systems (TDS) is considered in this paper. The closed-loop system of the plant and structurally constrained controller is modelled by a system of delay differential algebraic equations (DDAEs). A robust controller design approach using the existing spectrum based stabilisation and the H-infinity norm optimisation of DDAEs has been proposed. A MATLAB based tool has been made available to realise this approach. This tool allows the designer to select the sub-controller input-output interactions and fix their orders. The results obtained while stabilising and optimising two TDS using structurally constrained (decentralised and overlapping) controllers have been presented in this paper

    State dependent NGMV control of delayed piecewise affine systems

    Get PDF
    A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of delayed piecewise affine (PWA) systems which are an important subclass of hybrid systems. Under some conditions, discrete-time PWA systems can be transferred into their equivalent state dependent nonlinear systems form. The equivalent state dependent systems that include reference and disturbances models are very general. The process is assumed to include common delays in input or output channels of magnitude k. Then the NGMV control strategy [16] can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems but has the advantage that it can stabilize open-loop unstable processes [17]

    Plug-and-Play Fault Detection and control-reconfiguration for a class of nonlinear large-scale constrained systems

    Get PDF
    This paper deals with a novel Plug-and-Play (PnP) architecture for the control and monitoring of Large-Scale Systems (LSSs). The proposed approach integrates a distributed Model Predictive Control (MPC) strategy with a distributed Fault Detection (FD) architecture and methodology in a PnP framework. The basic concept is to use the FD scheme as an autonomous decision support system: once a fault is detected, the faulty subsystem can be unplugged to avoid the propagation of the fault in the interconnected LSS. Analogously, once the issue has been solved, the disconnected subsystem can be re-plugged-in. PnP design of local controllers and detectors allow these operations to be performed safely, i.e. without spoiling stability and constraint satisfaction for the whole LSS. The PnP distributed MPC is derived for a class of nonlinear LSSs and an integrated PnP distributed FD architecture is proposed. Simulation results in two paradigmatic examples show the effectiveness and the potential of the general methodology

    A Survey of Decentralized Adaptive Control

    Get PDF
    corecore