5 research outputs found

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

    Get PDF
    To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation framework, the problem of symbol time offset (STO) and carrier frequency offset (CFO) estimation is investigated and synchronization approaches, which can operate in burst and continuous transmissions, are designed. The first part of this work presents the modulation principles of prominent 5G candidate waveforms and then focuses on the GFDM basic and advanced attributes. The GFDM concept is extended towards the use of OQAM, introducing the novel frequency-shift OQAM-GFDM, and a new low complexity model based on signal processing carried out in the time domain. A new prototype filter proposal highlights the benefits obtained in terms of a reduced out-of-band (OOB) radiation and more attractive hardware implementation cost. With proper parameterization of the advanced GFDM, the achieved gains are applicable to other filtered OFDM waveforms. In the second part, a search approach for estimating STO and CFO in GFDM is evaluated. A self-interference metric is proposed to quantify the effective SNR penalty caused by the residual time and frequency misalignment or intrinsic inter-symbol interference (ISI) and inter-carrier interference (ICI) for arbitrary pulse shape design in GFDM. In particular, the ICI can be used as a non-data aided approach for frequency estimation. Then, GFDM training sequences, defined either as an isolated preamble or embedded as a midamble or pseudo-circular pre/post-amble, are designed. Simulations show better OOB emission and good estimation results, either comparable or superior, to state-of-the-art OFDM system in wireless channels

    Low-Complexity Multicarrier Waveform Processing Schemes fo Future Wireless Communications

    Get PDF
    Wireless communication systems deliver enormous variety of services and applications. Nowa- days, wireless communications play a key-role in many fields, such as industry, social life, education, and home automation. The growing demand for wireless services and applications has motivated the development of the next generation cellular radio access technology called fifth-generation new radio (5G-NR). The future networks are required to magnify the delivered user data rates to gigabits per second, reduce the communication latency below 1 ms, and en- able communications for massive number of simple devices. Those main features of the future networks come with new demands for the wireless communication systems, such as enhancing the efficiency of the radio spectrum use at below 6 GHz frequency bands, while supporting various services with quite different requirements for the waveform related key parameters. The current wireless systems lack the capabilities to handle those requirements. For exam- ple, the long-term evolution (LTE) employs the cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) waveform, which has critical drawbacks in the 5G-NR context. The basic drawback of CP-OFDM waveform is the lack of spectral localization. Therefore, spectrally enhanced variants of CP-OFDM or other multicarrier waveforms with well localized spectrum should be considered. This thesis investigates spectrally enhanced CP-OFDM (E-OFDM) schemes to suppress the out-of-band (OOB) emissions, which are normally produced by CP-OFDM. Commonly, the weighted overlap-and-add (WOLA) scheme applies smooth time-domain window on the CP- OFDM waveform, providing spectrally enhanced subcarriers and reducing the OOB emissions with very low additional computational complexity. Nevertheless, the suppression perfor- mance of WOLA-OFDM is not sufficient near the active subband. Another technique is based on filtering the CP-OFDM waveform, which is referred to as F-OFDM. F-OFDM is able to provide well-localized spectrum, however, with significant increase in the computational com- plexity in the basic scheme with time-domain filters. Also filter-bank multicarrier (FBMC) waveforms are included in this study. FBMC has been widely studied as a potential post- OFDM scheme with nearly ideal subcarrier spectrum localization. However, this scheme has quite high computational complexity while being limited to uniformly distributed sub- bands. Anyway, filter-bank based waveform processing is one of the main topics of this work. Instead of traditional polyphase network (PPN) based uniform filter banks, the focus is on fast-convolution filter banks (FC-FBs), which utilize fast Fourier transform (FFT) domain processing to realize effectively filter-banks with high flexibility in terms of subcarrier bandwidths and center frequencies. FC-FBs are applied for both FBMC and F-OFDM waveform genera- tion and processing with greatly increased flexibility and significantly reduced computational complexity. This study proposes novel structures for FC-FB processing based on decomposition of the FC-FB structure consisting of forward and inverse discrete Fourier transforms (DFT and IDFT). The decomposition of multirate FC provides means of reducing the computational complexity in some important specific scenarios. A generic FC decomposition model is proposed and analyzed. This scheme is mathematically equivalent to the corresponding direct FC imple- mentation, with exactly the same performance. The benefits of the optimized decomposition structure appear mainly in communication scenarios with relatively narrow active transmis- sion band, resulting in significantly reduced computational complexity compared to the direct FC structure. The narrowband scenarios find their places in the recent 3GPP specification of cellular low- power wide-area (LPWA) access technology called narrowband internet-of-things (NB-IoT). NB-IoT aims at introducing the IoT to LTE and GSM frequency bands in coexistence with those technologies. NB-IoT uses CP-OFDM based waveforms with parameters compatible with the LTE. However, additional means are needed also for NB-IoT transmitters to improve the spec- trum localization. For NB-IoT user devices, it is important to consider ultra-low complexity solutions, and a look-up table (LUT) based approach is proposed to implement NB-IoT uplink transmitters with filtered waveforms. This approach provides completely multiplication-free digital baseband implementations and the addition rates are similar or smaller than in the basic NB-IoT waveform generation without the needed elements for spectrum enhancement. The basic idea includes storing full or partial waveforms for all possible data symbol combinations. Then the transmitted waveform is composed through summation of needed stored partial waveforms and trivial phase rotations. The LUT based scheme is developed with different vari- ants tackling practical implementations issues of NB-IoT device transmitters, considering also the effects of nonlinear power amplifier. Moreover, a completely multiplication and addition- free LUT variant is proposed and found to be feasible for very narrowband transmission, with up to 3 subcarriers. The finite-wordlength performance of LUT variants is evaluated through simulations

    PAPR Reduction Solutions for 5G and Beyond

    Get PDF
    The latest fifth generation (5G) wireless technology provides improved communication quality compared to earlier generations. The 5G New Radio (NR), specified by the 3rd Generation Partnership Project (3GPP), addresses the modern requirements of the wireless networks and targets improved communication quality in terms of for example peak data rates, latency and reliability. On the other hand, there are still various crucial issues that impact the implementation and energy-efficiency of 5G NR networks and their different deployments. The power-efficiency of transmitter power amplifiers (PAs) is one of these issues. The PA is an important unit of a communication system, which is responsible from amplifying the transmit signal towards the antenna. Reaching high PA power-efficiency is known to be difficult when the transmit waveform has a high peak-to-average power ratio (PAPR). The cyclic prefix (CP)-orthogonal frequencydivision multiplexing (OFDM) that is the main physical-layer waveform of 5G NR, suffers from such high PAPR challenge. There are generally many PAPR reduction methods proposed in the literature, however, many of these have either very notable computational complexity or impose substantial inband distortion. Moreover, 5G NR has new features that require redesigning the PAPR reduction methods. In line with these, the first contribution of this thesis is the novel frequencyselective PAPR reduction concept, where clipping noise is shaped in a frequencyselective manner over the active passband. This concept is in line with the 5G NR, where aggressive frequency-domain multiplexing is considered as an important feature. Utilizing the frequency-selective PAPR reduction enables the realization of the heterogeneous resource utilization within one passband. The second contribution of this thesis is the frequency-selective single-numerology (SN) and mixed-numerology (MN) PAPR reduction methods. The 5G NR targets utilizing different physical resource blocks (PRBs) and bandwidth parts (BWPs) within one passband flexibly. Yet, existing PAPR reduction methods do not exploit these features. Based on this, novel algorithms utilizing PRB and BWP level control of clipping noise are designed to meet error vector magnitude (EVM) limits of the modulations while reducing the PAPR. TheMNallocation has one critical challenge as inter numerology interference (INI) emerges after aggregation of subband signals. Proposed MN PAPR reduction algorithm overcomes this issue by cancelling INI within the PAPR reduction loop, which has not been considered earlier. The third contribution of this thesis is the proposal of two novel non-iterative PAPR reduction methods. First method utilizes the fast-convolution filteredOFDM (FC-F-OFDM) that has excellent spectral containment, and combines it with clipping. Moreover, clipping noise is also allocated to guard bands by filter passband extension (FPE) and clipping noise in out-of-band (OOB) regions is essentially filtered through FC filtering. The second method is the guard-tone reservation (GTR) which is applied to discrete Fourier transform-spread-OFDM (DFT-s-OFDM). Uniquely, GTR estimates the time domain peaks in data symbol domain before inverse fast Fourier transform (IFFT), and uses guard band tones for PAPR reduction. The fourth contribution of the thesis is the design of two novel machine learning (ML) algorithms that improve the drawbacks of frequency-selective PAPRreduction. The first ML algorithm, PAPRer, models the nonlinear relation between the PAPR target and the realized PAPR value. Then, it auto-tunes the optimal PAPR target and this way minimizes the realized PAPR. The second ML algorithm, one-shot clipping-and-filtering (OSCF), solves the complexity problem of iterative clipping and filtering (ICF)-like methods by generating proper approximated clipping noise signal after running only one iteration, leading to very efficient PAPR reduction. Finally, an over-arching contribution of this thesis is the experimental validation of the performance benefits of the proposed methods by considering realistic 5GNR uplink (UL) and downlink (DL) testbeds that include realistic PAs and associated hardware. It is very important to confirm the practical benefits of the proposed methods and, this is realized with the conducted experimental work
    corecore