523 research outputs found

    A Cross-Layer Approach for Minimizing Interference and Latency of Medium Access in Wireless Sensor Networks

    Full text link
    In low power wireless sensor networks, MAC protocols usually employ periodic sleep/wake schedule to reduce idle listening time. Even though this mechanism is simple and efficient, it results in high end-to-end latency and low throughput. On the other hand, the previously proposed CSMA/CA-based MAC protocols have tried to reduce inter-node interference at the cost of increased latency and lower network capacity. In this paper we propose IAMAC, a CSMA/CA sleep/wake MAC protocol that minimizes inter-node interference, while also reduces per-hop delay through cross-layer interactions with the network layer. Furthermore, we show that IAMAC can be integrated into the SP architecture to perform its inter-layer interactions. Through simulation, we have extensively evaluated the performance of IAMAC in terms of different performance metrics. Simulation results confirm that IAMAC reduces energy consumption per node and leads to higher network lifetime compared to S-MAC and Adaptive S-MAC, while it also provides lower latency than S-MAC. Throughout our evaluations we have considered IAMAC in conjunction with two error recovery methods, i.e., ARQ and Seda. It is shown that using Seda as the error recovery mechanism of IAMAC results in higher throughput and lifetime compared to ARQ.Comment: 17 pages, 16 figure

    A mobility-supporting MAC scheme for bursty traffic in IoT and WSNs

    Get PDF
    International audienceRecent boom of mobile applications has become an essential class of mobile Internet of Things (IoT), whereby large amounts of sensed data are collected and shared by mobile sensing devices for observing phenomena such as traffic or the environmental. Currently, most of the proposed Medium Access Control (MAC) protocols mainly focus on static networks. However, mobile sensor nodes may pose many communication challenges during the design and development of a MAC protocol. These difficulties first require an efficient connection establishment between a mobile and static node, and then an efficient data packet transmissions. In this study, we propose MobIQ, an advanced mobility-handling MAC scheme for low-power MAC protocols, which achieves for efficient neighbour(hood) discovery and low-delay communication. Our thorough performance evaluation, conducted on top of Contiki OS, shows that MobIQ outperforms state-of-the-art solutions such as MoX-MAC, MOBINET and ME-ContikiMAC, in terms of significantly reducing delay, contention to the medium and energy consumption

    Congestion control protocols in wireless sensor networks: A survey

    Get PDF
    The performance of wireless sensor networks (WSN) is affected by the lossy communication medium, application diversity, dense deployment, limited processing power and storage capacity, frequent topology change. All these limitations provide significant and unique design challenges to data transport control in wireless sensor networks. An effective transport protocol should consider reliable message delivery, energy-efficiency, quality of service and congestion control. The latter is vital for achieving a high throughput and a long network lifetime. Despite the huge number of protocols proposed in the literature, congestion control in WSN remains challenging. A review and taxonomy of the state-of-the-art protocols from the literature up to 2013 is provided in this paper. First, depending on the control policy, the protocols are divided into resource control vs. traffic control. Traffic control protocols are either reactive or preventive (avoiding). Reactive solutions are classified following the reaction scale, while preventive solutions are split up into buffer limitation vs. interference control. Resource control protocols are classified according to the type of resource to be tuned. © 2014 IEEE

    Tree TDMA MAC Algorithm Using Time and Frequency Slot Allocations in Tree-Based WSNs

    Get PDF
    In this paper, we propose a tree-based time division multiple access (Tree TDMA) media access control (MAC) algorithm based on the IEEE 802.15.4 PHY standard. The method involves the simultaneous use of two algorithms, a time slot allocation algorithm (TSAA) and a frequency slot allocation algorithm (FSAA), at low power consumption to support voice and data communication to solve the problems afflicting prevalent MAC protocols in tree topology networks. The TSAA first generates routing paths through the control channel in a super frame prior to transmitting packets, and allocates time slots for each node to transmit packets. The FSAA then allocates frequencies to each path according to the routing paths generated following its application. The overhearing problem and the funneling effect in TDMA as well as carrier sense multiple access with collision avoidance (CSMA/CA) MACs are resolved by these two algorithms because a given node and its neighbors are orthogonal in terms of time and frequency. The problem of inter-node synchronization is addressed by periodically sending a beacon from higher to lower nodes, and the issue of low power is solved by leaving unsigned time slots in an idle state. To test the effectiveness of the proposed algorithm, we used a MATLAB simulation to compare its performance with that of contention-based CSMA MAC and non-contention-based TreeMAC in terms of network throughput, network delay, energy efficiency, and energy consumption. We also tested the performance of the algorithms for increasing number of nodes and transmission packets in the tree topology network.This work was supported by the ICT R&D Program of MSIP/IITP. [B0126-16-1018, The IoT Platform for Virtual Things, Distributed Autonomous Intellgence and Data Federation/Analysis

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    Analysis and Comparison of SMAC and TMAC Protocol for Energy Efficient Dynamic Topology in Sensor Network

    Get PDF
    In the era of wireless communication, wireless sensor is one of the best technologies we are witnessing. In case of environmental monitoring, tactical systems and different tracking applications, wireless sensors are being used. Here, the corresponding nodes operate on incomplete power and thus the energy comes into play to operate these entire networks. Managing the energy and its utilization is vital for TCP/IP protocol suite which is MAC layer’s application. Thus keeping in mind the above challenges, the techniques used are increasing the sleep duration, over hearing and ideal listening, collision of packet and eliminating hidden terminal problem. This paper is oriented towards the comparison of energy consumption by SMAC and TMAC protocol. The characteristics of TMAC and SMAC protocols were explored keeping real transmission conditions intact, like variable transmission bit rate, dynamic topology and mobile sensors in network. TMAC and SMAC protocols are contention based protocols and are designed to keep the energy consumption low using duty cycle

    Comprehensive Survey Congestion Control Mechanisms in Wireless Sensor Networks:Comprehensive Survey

    Get PDF
    Wireless sensor network (WSN) occupies the top rank of the widely used networks for gathering different type of information from different averments. WSN has nodes with limited resources so congestion can cause a critical damage to such network where it limited resources can be exhausted. Many approaches has been proposed to deal with this problem. In this paper, different proposed algorithm for congestion detection, notification, mitigation and avoidance has been listed and discussed. These algorithms has been investigated by presenting its advantages and disadvantages. This paper provides a robust background for readers and researches for wireless sensor networks congestion control approaches. Keywords: WSN, Congestion Control, congestion mitigation, congestion detection, sink channel load, buffer load
    corecore