218 research outputs found

    PHOABE : securely outsourcing multi-authority attribute based encryption with policy hidden for cloud assisted IoT

    Get PDF
    Attribute based encryption (ABE) is an encrypted access control mechanism that ensures efficient data sharing among dynamic group of users. Nevertheless, this encryption technique presents two main drawbacks, namely high decryption cost and publicly shared access policies, thus leading to possible users’ privacy leakage. In this paper, we introduce PHOABE, a Policy-Hidden Outsourced ABE scheme. Our construction presents several advantages. First, it is a multi-attribute authority ABE scheme. Second, the expensive computations for the ABE decryption process is partially delegated to a Semi Trusted Cloud Server. Third, users’ privacy is protected thanks to a hidden access policy. Fourth, PHOABE is proven to be selectively secure, verifiable and policy privacy preserving under the random oracle model. Five, estimation of the processing overhead proves its feasibility in IoT constrained environments

    Location-Based Services and Privacy Protection under Mobile Cloud Computing

    Get PDF
    Location-based services can provide personalized services based on location information of moving objects and have already been widely used in public safety services, transportation, entertainment and many other areas. With the rapid development of mobile communication technology and popularization of intelligent terminals, there will be great commercial prospects to provide location-based services under mobile cloud computing environment. However, the high adhesion degree of mobile terminals to users not only brings facility but also results in the risk of privacy leak. The paper introduced the necessities and advantages to provide location-based services under mobile cloud computing environment, stressed the importance to protect location privacy in LBS services, pointed out new security risks brought by mobile cloud computing, and proposed a new framework and implementation method of LBS service. The cloud-based LBS system proposed in this paper is able to achieve privacy protection from the confidentiality of outsourced data and integrity of service results, and can be used as a reference while developing LBS system under mobile cloud computing environment

    Fog based Secure Framework for Personal Health Records Systems

    Get PDF
    The rapid development of personal health records (PHR) systems enables an individual to collect, create, store and share his PHR to authorized entities. Health care systems within the smart city environment require a patient to share his PRH data with a multitude of institutions' repositories located in the cloud. The cloud computing paradigm cannot meet such a massive transformative healthcare systems due to drawbacks including network latency, scalability and bandwidth. Fog computing relieves the burden of conventional cloud computing by availing intermediate fog nodes between the end users and the remote servers. Aiming at a massive demand of PHR data within a ubiquitous smart city, we propose a secure and fog assisted framework for PHR systems to address security, access control and privacy concerns. Built under a fog-based architecture, the proposed framework makes use of efficient key exchange protocol coupled with ciphertext attribute based encryption (CP-ABE) to guarantee confidentiality and fine-grained access control within the system respectively. We also make use of digital signature combined with CP-ABE to ensure the system authentication and users privacy. We provide the analysis of the proposed framework in terms of security and performance.Comment: 12 pages (CMC Journal, Tech Science Press

    A Review on Cloud Data Security Challenges and existing Countermeasures in Cloud Computing

    Get PDF
    Cloud computing (CC) is among the most rapidly evolving computer technologies. That is the required accessibility of network assets, mainly information storage with processing authority without the requirement for particular and direct user administration. CC is a collection of public and private data centers that provide a single platform for clients throughout the Internet. The growing volume of personal and sensitive information acquired through supervisory authorities demands the usage of the cloud not just for information storage and for data processing at cloud assets. Nevertheless, due to safety issues raised by recent data leaks, it is recommended that unprotected sensitive data not be sent to public clouds. This document provides a detailed appraisal of the research regarding data protection and privacy problems, data encrypting, and data obfuscation, including remedies for cloud data storage. The most up-to-date technologies and approaches for cloud data security are examined. This research also examines several current strategies for addressing cloud security concerns. The performance of each approach is then compared based on its characteristics, benefits, and shortcomings. Finally, go at a few active cloud storage data security study fields

    Protection of big data privacy

    Full text link
    In recent years, big data have become a hot research topic. The increasing amount of big data also increases the chance of breaching the privacy of individuals. Since big data require high computational power and large storage, distributed systems are used. As multiple parties are involved in these systems, the risk of privacy violation is increased. There have been a number of privacy-preserving mechanisms developed for privacy protection at different stages (e.g., data generation, data storage, and data processing) of a big data life cycle. The goal of this paper is to provide a comprehensive overview of the privacy preservation mechanisms in big data and present the challenges for existing mechanisms. In particular, in this paper, we illustrate the infrastructure of big data and the state-of-the-art privacy-preserving mechanisms in each stage of the big data life cycle. Furthermore, we discuss the challenges and future research directions related to privacy preservation in big data

    CUPS : Secure Opportunistic Cloud of Things Framework based on Attribute Based Encryption Scheme Supporting Access Policy Update

    Get PDF
    The ever‐growing number of internet connected devices, coupled with the new computing trends, namely within emerging opportunistic networks, engenders several security concerns. Most of the exchanged data between the internet of things (IoT) devices are not adequately secured due to resource constraints on IoT devices. Attribute‐based encryption is a promising cryptographic mechanism suitable for distributed environments, providing flexible access control to encrypted data contents. However, it imposes high decryption costs, and does not support access policy update, for highly dynamic environments. This paper presents CUPS, an ABE‐based framework for opportunistic cloud of things applications, that securely outsources data decryption process to edge nodes in order to reduce the computation overhead on the user side. CUPS allows end‐users to offload most of the decryption overhead to an edge node and verify the correctness of the received partially decrypted data from the edge node. Moreover, CUPS provides the access policy update feature with neither involving a proxy‐server, nor re‐encrypting the enciphered data contents and re‐distributing the users' secret keys. The access policy update feature in CUPS does not affect the size of the message received by the end‐user, which reduces the bandwidth and the storage usage. Our comprehensive theoretical analysis proves that CUPS outperforms existing schemes in terms of functionality, communication and computation overheads

    Secure and Privacy-Preserving Data Sharing and Collaboration in Mobile Healthcare Social Networks of Smart Cities

    Get PDF
    Mobile healthcare social networks (MHSN) integrated with connected medical sensors and cloud-based health data storage provide preventive and curative health services in smart cities. The fusion of social data together with real-time health data facilitates a novel paradigm of healthcare big data analysis. However, the collaboration of healthcare and social network service providers may pose a series of security and privacy issues. In this paper, we propose a secure health and social data sharing and collaboration scheme in MHSN. To preserve the data privacy, we realize secure and fine-grained health data and social data sharing with attribute-based encryption and identity-based broadcast encryption techniques, respectively, which allows patients to share their private personal data securely. In order to achieve enhanced data collaboration, we allow the healthcare analyzers to access both the reencrypted health data and the social data with authorization from the data owner based on proxy reencryption. Specifically, most of the health data encryption and decryption computations are outsourced from resource-constrained mobile devices to a health cloud, and the decryption of the healthcare analyzer incurs a low cost. The security and performance analysis results show the security and efficiency of our scheme

    A survey of state-of-the-art methods for securing medical databases

    Get PDF
    This review article presents a survey of recent work devoted to advanced state-of-the-art methods for securing of medical databases. We concentrate on three main directions, which have received attention recently: attribute-based encryption for enabling secure access to confidential medical databases distributed among several data centers; homomorphic encryption for providing answers to confidential queries in a secure manner; and privacy-preserving data mining used to analyze data stored in medical databases for verifying hypotheses and discovering trends. Only the most recent and significant work has been included
    • 

    corecore