9 research outputs found

    COMMANDE ET STABILITE DES SYSTEMES LINEAIRES FLOUS DE TAKAGI-SUGENO

    Get PDF
    Dans cet article, on présente un algorithme pour la conception d’un contrôleur linéaire stabilisant une classe desystèmes flous. Les systèmes en question sont du type Takagi-Sugeno, caractérisés par une représentationlinéaire du type x A x B u j j & = + . Cet algorithme exploite les modèles locaux du système, obtenus autour de pointsde fonctionnement et établis par l’expertise humaine sous la forme de règles de type IF-THEN. La mise en oeuvre del’algorithme exige la stabilité, au sens de Lyapunov, d’au moins un modèle local (Aj, Bj). L’algorithme ainsidéveloppé est appliqué à un robot manipulateur à un degré de liberté. Les simulations sont réalisées sousl’environnement MATLAB 5.3

    Center of Pressure Feedback for Controlling the Walking Stability Bipedal Robots using Fuzzy Logic Controller

    Get PDF
    This paper presents a sensor-based stability walk for bipedal robots by using force sensitive resistor (FSR) sensor. To perform walk stability on uneven terrain conditions, FSR sensor is used as feedbacks to evaluate the stability of bipedal robot instead of the center of pressure (CoP). In this work, CoP that was generated from four FSR sensors placed on each foot-pad is used to evaluate the walking stability. The robot CoP position provided an indication of walk stability. The CoP position information was further evaluated with a fuzzy logic controller (FLC) to generate appropriate offset angles to be applied to meet a stable situation. Moreover, in this paper designed a FLC through CoP region's stability and stable compliance control are introduced. Finally, the performances of the proposed methods were verified with 18-degrees of freedom (DOF) kid-size bipedal robot

    Control Design of Fuzzy Systems with Immeasurable Premise Variables

    Get PDF

    Logika Fuzzy pada Robot Inverted Pendulum Beroda Dua

    Get PDF
    AbstrakRobot inverted pendulum  beroda dua (IPBD) merupakan sistem yang tidak stabil dan bersifat non-linear. Motor DC sebagai penggerak robot yang terletak pada masing-masing roda kiri dan kanan memberikan variabel gaya untuk mempertahankan kestabilan robot. Oleh karena itu diperlukan suatu kendali yang dapat menjaga keseimbangan dari robot. Makalah ini memaparkan kendali logika fuzzy dalam hal pengendali keseimbangan robot. Pada perancangan robot ini, penulis menggunakan senor inertia measurement unit (IMU) versi MPU 6050 sebagai sensor pendeteksi keseimbangan robot. Nilai setpoint sudut robot yang diberikan adalah sudut elevasi robot terhadap sumbu horizontal atau pada sumbu pitch. Selanjutnya, nilai keluaran sensor IMU dibandingkan dengan setpoint. Lebih lanjut, nilai kesalahan (error) dan nilai perubahan kesalahan (delta errror) yang dihasilkan akan digunakan sebagai masukan logika fuzzy. Hubungan relasi masukan fuzzy diselesaikan dengan aturan Mamdani. Keluaran dari logika fuzzy diselesaikan dengan perhitungan weight average (WA). Hasil keluaran logika fuzzy berupa nilai putaran motor kiri dan kanan yang dikendalikan dengan cara mengatur lebar pulsa sinyal pulse with modulation (PWM). Dari hasil pengujian diperoleh bahwa kendali logika fuzzy yang diaplikasikan pada robot IPBD dapat menjaga keseimbangan robot dengan osilasi pada sudut -2 hingga 2 derajat.Kata kunci: Logika Fuzzy, Inverted Pendulum, IMU  AbstractInverted robot pendulum two (IPBD) is an unstable system that is naturally and non-linear. The DC motor as a robot drive located on each of the left and right wheels provides a force variable to maintain the robot's stability. Therefore we need a control that can maintain the balance of the robot. This paper presents fuzzy logic control in terms of robot balance control. In designing this robot, the author uses inertia measurement unit senator (IMU) MPU 6050 version as a robot balance detection sensor. The given set of corner robot values is the robot's elevation angle to the horizontal axis or on the pitch axis. Furthermore, the value of the IMU sensor output is compared with the setpoint. Furthermore, the error value and the resulting error change value (delta errror) will be used as fuzzy logic input. The relation of fuzzy input relation is solved with Mamdani rule. The output of fuzzy logic is solved by calculating the weight average (WA). The result of fuzzy logic output is left and right motor rotation controlled by adjusting pulse signal of pulse with modulation (PWM). The experiment results obtained that fuzzy logic control applied to the robot IPBD can maintain the robot balance by having oscillations at an angle of -2 to 2 degrees.Keywords: Fuzzy Logic, Inverted Pendulum, IMU

    Rancang Bangun Sistem Penstabil Kamera (Gimbal) dengan Logika Fuzzy untuk Pengambilan Gambar Foto dan Video

    Get PDF
    Pada makalah ini memaparkan perancangan sistem penstabil kamera (gimbal) untuk mengurangi getaran maupun gerakan yang akan mengganggu kamera saat pengambilan gambar foto dan video. Sistem gimbal ini sangat penting digunakan dalam dunia fotografi dan videografi. Sistem gimbal yang dirancang pada penelitian ini adalah dengan  tiga buah joint pergerakan yaitu roll, pitch, yaw (RPY). Sensor orientasi yang digunakan pada rancangan sistem gimbal ini menggunakan sensor inertia measurement unit (IMU) MPU 6050 dengan Kalman filter (KF) sebagai pengkondisi pembacaan sudut RPY. Untuk memperoleh hasil gambar yang baik pada sistem gimbal diperlukan suatu kendali, sehingga pada penelitian ini dikembangkan suatu kendali logika fuzzy yang diimplementasikan dalam sebuah mikrokontroller untuk menggerakan aktuator gimbal. Sistem aktuator pada rancangan gimbal menggunakan motorservo. Nilai setpoint sudut gimbal yang diberikan merupakan sudut elevasi gimbal terhadap tiga sumbu sudut RPY. Selanjutnya, nilai keluaran pembacaan sensor IMU dibandingkan dengan nilai setpoint pada masing-masing sumbu. Setelah itu, nilai kesalahan (error) dan nilai perubahan kesalahan (delta errror) yang didapat akan digunakan sebagai nilai masukan logika fuzzy. Terdapat tiga buah loop tertutup pada kendali logika fuzzy untuk masing-masing sudut RPY. Hubungan relasi masukan fuzzy diselesaikan menggunakan aturan Mamdani dan keluaran dari logika fuzzy diselesaikan dengan menggunakan metode weight average (WA). Dari hasil pengujian diketahui bahwa kendali logika fuzzy yang diimplementasikan pada sistem gimbal mampu mengurangi efek getaran sehingga diperoleh gambar yang baik dan tidak blur.   Abstract   This paper describes the design of the camera stabilizer system (gimbal) to reduce vibration or movement that will disturb the camera when take a picture and video. This gimbal system is very important used in the world of photography and videography. Gimbal system that designed in this research is gimbal with three joints movement that is roll, pitch, yaw (RPY). The orientation sensor that used in this gimbal system design uses an inertial measurement unit sensor (IMU) MPU 6050 with Kalman filter (KF) as RPY angle reading conditioner. To obtain a good image on the gimbal system required a control, so in this research developed a fuzzy logic control that is implemented in a microcontroller to drive gimbal’s actuators. The actuators system on gimbal design uses motorservo. The given setpoint value of the gimbal is the elevation angle of gimbal against the three RPY angle axes. Furthermore, the output value of the IMU sensor is compared with the setpoint of each axis. Moreover, the error value and the change of error value (delta errror) will be used as fuzzy logic input. There are three closed loops on the fuzzy logic control for each RPY angle. The relation of fuzzy input is solved with Mamdani rule and the output of fuzzy logic is solved with weight average (WA). From the test results obtained that fuzzy logic control applied to the gimbal system is able to reduce the effects of vibration so as to obtain a good image and not blur

    Fuzzy Control of Flexible Multibody Spacecraft: A Linear Matrix Inequality Approach

    Get PDF
    To reduce the cost of lifting to orbit, modern spacecraft and structures used in space applications are designed from light material as flexible multibody system. Moreover The unprecedented requirements for rapid retargeting, precision pointing and tracking capability have made these multibody highly flexible spacecraft vulnerable to dynamic excitation caused by the slewing/pointing maneuver, vibration and external disturbances. As a result, this will degrade the performance of the spacecraft including the pointing accuracy. Thus the aspect of modeling and control become extremely important for the safe and effective operation. Despite the numerous research, the development of high performance, nonlinear control laws for attitude stability, rapid slewing and precision pointing remain the primary objective of scientists and engineers. The aim of the work presented in this thesis is to investigate the stability, performance, and robustness of a class of fuzzy control system called Takagi-Sugeno (T-S) applied to a flexible multi-body spacecraft, and to show the advantage and the simplicity in implementing the T-S fuzzy controller over other baseline nonlinear controllers

    Actes des 22èmes rencontres francophones sur la Logique Floue et ses Applications, 10-11 octobre 2013, Reims, France

    Get PDF
    corecore