137 research outputs found

    Robust Output Regulation for Autonomous Robots:self-learning mechanisms, task-space control and multi-agent systems

    Get PDF
    This thesis focuses on robust output regulation for autonomous robots. The control objective of output regulation is to design a feedback controller to achieve asymptotic tracking and/or disturbance rejection for a class of exogenous reference and/or disturbance while maintaining closed-loop stability. We investigate three research problems that pertain to the constructive design of robust output regulation for fully actuated Euler-Lagrange systems from centralized to distributed fashions. The first one is the global robust output regulation of second-order affine nonlinear systems with input disturbances that encompass the fully-actuated Euler-Lagrange systems. Based on a certainty equivalence principle method, we proposed a novel class of nonlinear internal models taking a cascade interconnection structure with strictly relaxed conditions than before. The second one is the output regulation for robot manipulators working in task-space. An internal model-based adaptive controller is designed to cope with uncertain manipulator kinematic and dynamic parameters, as well as unknown periodic reference trajectories generated by harmonic oscillators. The last one is the formation control of manipulators’ end-effector subject to external disturbances or parameter uncertainties. We present and analyze gradient descent-based distributed formation controllers for end-effectors. Internal models are used to reject external disturbances. Moreover, by introducing an extra integrator and an adaptive estimator for gravitational compensation and stabilization, respectively, we extend the proposed gradient-based design to the case where the plant parameters are not exactly known

    Global Multivariable Control of Permanent Magnet Synchronous Motor for Mechanical Elastic Energy Storage System under Multiclass Nonharmonic External Disturbances

    Get PDF
    For the technology of mechanical elastic energy storage utilizing spiral torsion springs as the energy storage media presented previously, a global multivariable control algorithm based on nonlinear internal model principle under multiclass external disturbances is proposed. The nonlinear external disturbances with nonharmonic periodic characteristics are generated by multiclass nonlinear external systems. New equations of nonlinear internal model are designed to estimate the multiclass external disturbances. On the basis of constructing the control law of nominal system, a state feedback controller is designed to guarantee the closed-loop system globally uniformly bounded, and a Lyapunov function is constructed to theoretically prove the global uniform boundedness of the multivariable closed-loop system signals. The simulation results verify the correctness and effectiveness of the presented algorithm

    Adaptive output regulation for multivariable linear systems via slow identifiers

    Get PDF
    open3noThis paper deals with the problem of adaptive output regulation for linear multivariable systems. The proposed solution employs a continuous-time identifier that adapts the parameters of the internal model to match the (unknown) exosystem frequencies. Boundedness of the closed-loop trajectories is established and, under a persistence of excitation condition, asymptotic regulation is shown.openMelis A.; Bin M.; Marconi L.Melis A.; Bin M.; Marconi L

    On self-learning mechanism for the output regulation of second-order affine nonlinear systems

    Get PDF
    This paper studies global robust output regulation of second-order nonlinear systems with input disturbances that encompass the fully-actuated Euler-Lagrange systems. We assume the availability of relative output (w.r.t. a family of reference signals) and output derivative measurements. Based on a specific separation principle and self learning mechanism, we develop an internal model-based controller that does not require apriori knowledge of reference and disturbance signals and it only assumes that the kernels of these signals are a family of exosystems with unknown parameters (e.g., amplitudes, frequencies or time periods). The proposed control framework has a self-learning mechanism that extricates itself from requiring absolute position measurement nor precise knowledge of the feedforward kernel signals. By requiring the high-level task/trajectory planner to use the same class of kernels in constraining the trajectories, the proposed low-level controller is able to learn the desired trajectories, to suppress the disturbance signals, and to adapt itself to the uncertain plant parameters. The framework enables a plug-and-play control mechanism in both levels of control
    • …
    corecore